- -

Assessment of mechanical properties of human head tissues for trauma modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of mechanical properties of human head tissues for trauma modelling

Mostrar el registro completo del ítem

Lozano-Mínguez, E.; Palomar-Toledano, M.; Infante, D.; Rupérez Moreno, MJ.; Giner Maravilla, E. (2018). Assessment of mechanical properties of human head tissues for trauma modelling. International Journal for Numerical Methods in Biomedical Engineering. 34(5):1-17. https://doi.org/10.1002/cnm.2962

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136478

Ficheros en el ítem

Metadatos del ítem

Título: Assessment of mechanical properties of human head tissues for trauma modelling
Autor: Lozano-Mínguez, Estívaliz Palomar-Toledano, Marta Infante, Diego Rupérez Moreno, María José Giner Maravilla, Eugenio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Many discrepancies are found in the literature regarding the damage and constitutive models for head tissues as well as the values of the constants involved in the constitutive equations. Their proper definition is ...[+]
Palabras clave: Head impact response , Head tissues , Human head model , Intracranial pressure , Skull fracture
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal for Numerical Methods in Biomedical Engineering. (eissn: 2040-7947 )
DOI: 10.1002/cnm.2962
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cnm.2962
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTC-2015-3887-8Q4618002BC.VALENCIANA/ES/DISEÑO AVANZADO Y FABRICACIÓN DE PROTECCIONES PERSONALES INTEGRALES DE USO MILITAR Y PARA FUERZAS Y CUERPOS DE SEGURIDAD DEL ESTADO (PROTEC_DAF)/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
Agradecimientos:
Generalitat Valenciana, Grant/Award Number: PROMETEO 2016/007; Ministerio de Economia y Compatitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: RTC-2015-3887-8
Tipo: Artículo

References

Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 22(5), 341-353. doi:10.3233/nre-2007-22502

Meaney, D. F., Morrison, B., & Dale Bass, C. (2014). The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden. Journal of Biomechanical Engineering, 136(2). doi:10.1115/1.4026364

Report Violence and Injury Prevention and Disability (VIP)-neurotrauma 2010 http://www.who.int/violence_injury_prevention/road_traffic/activities/neurotrauma/en/ [+]
Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 22(5), 341-353. doi:10.3233/nre-2007-22502

Meaney, D. F., Morrison, B., & Dale Bass, C. (2014). The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden. Journal of Biomechanical Engineering, 136(2). doi:10.1115/1.4026364

Report Violence and Injury Prevention and Disability (VIP)-neurotrauma 2010 http://www.who.int/violence_injury_prevention/road_traffic/activities/neurotrauma/en/

Deng, X., Potula, S., Grewal, H., Solanki, K. N., Tschopp, M. A., & Horstemeyer, M. F. (2013). Finite element analysis of occupant head injuries: Parametric effects of the side curtain airbag deployment interaction with a dummy head in a side impact crash. Accident Analysis & Prevention, 55, 232-241. doi:10.1016/j.aap.2013.03.016

Marjoux, D., Baumgartner, D., Deck, C., & Willinger, R. (2008). Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accident Analysis & Prevention, 40(3), 1135-1148. doi:10.1016/j.aap.2007.12.006

Bolander, R., Mathie, B., Bir, C., Ritzel, D., & VandeVord, P. (2011). Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat when Exposed to a Shock Wave. Annals of Biomedical Engineering, 39(10), 2550-2559. doi:10.1007/s10439-011-0343-0

Li, G., Zhang, J., Wang, K., Wang, M., Gao, C., & Ma, C. (2016). Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress. Journal of the Mechanical Behavior of Biomedical Materials, 57, 224-234. doi:10.1016/j.jmbbm.2015.12.002

YOGANANDAN, N., PINTAR, F. A., SANCES, A., WALSH, P. R., EWING, C. L., THOMAS, D. J., & SNYDER, R. G. (1995). Biomechanics of Skull Fracture. Journal of Neurotrauma, 12(4), 659-668. doi:10.1089/neu.1995.12.659

Motherway, J. A., Verschueren, P., Van der Perre, G., Vander Sloten, J., & Gilchrist, M. D. (2009). The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position. Journal of Biomechanics, 42(13), 2129-2135. doi:10.1016/j.jbiomech.2009.05.030

Lakatos, É., Magyar, L., & Bojtár, I. (2014). Material Properties of the Mandibular Trabecular Bone. Journal of Medical Engineering, 2014, 1-7. doi:10.1155/2014/470539

Boruah, S., Subit, D. L., Paskoff, G. R., Shender, B. S., Crandall, J. R., & Salzar, R. S. (2017). Influence of bone microstructure on the mechanical properties of skull cortical bone – A combined experimental and computational approach. Journal of the Mechanical Behavior of Biomedical Materials, 65, 688-704. doi:10.1016/j.jmbbm.2016.09.041

McElhaney, J. H., Fogle, J. L., Melvin, J. W., Haynes, R. R., Roberts, V. L., & Alem, N. M. (1970). Mechanical properties of cranial bone. Journal of Biomechanics, 3(5), 495-511. doi:10.1016/0021-9290(70)90059-x

Kleiven, S. (2003). Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma. Journal of Neurotrauma, 20(4), 365-379. doi:10.1089/089771503765172327

Miller, L. E., Urban, J. E., & Stitzel, J. D. (2016). Development and validation of an atlas-based finite element brain model. Biomechanics and Modeling in Mechanobiology, 15(5), 1201-1214. doi:10.1007/s10237-015-0754-1

Tse, K. M., Tan, L. B., Lee, S. J., Lim, S. P., & Lee, H. P. (2015). Investigation of the relationship between facial injuries and traumatic brain injuries using a realistic subject-specific finite element head model. Accident Analysis & Prevention, 79, 13-32. doi:10.1016/j.aap.2015.03.012

Kimpara, H., Nakahira, Y., Iwamoto, M., Miki, K., Ichihara, K., Kawano, S., & Taguchi, T. (2006). Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model. SAE Technical Paper Series. doi:10.4271/2006-22-0019

Brands, D. W. A., Bovendeerd, P. H. M., & Wismans, J. S. H. M. (2002). On the Potential Importance of Non-Linear Viscoelastic Material Modelling for Numerical Prediction of Brain Tissue Response: Test and Application. SAE Technical Paper Series. doi:10.4271/2002-22-0006

Kleiven, S. (2007). Predictors for Traumatic Brain Injuries Evaluated through Accident Reconstructions. SAE Technical Paper Series. doi:10.4271/2007-22-0003

Ho, J., Zhou, Z., Li, X., & Kleiven, S. (2017). The peculiar properties of the falx and tentorium in brain injury biomechanics. Journal of Biomechanics, 60, 243-247. doi:10.1016/j.jbiomech.2017.06.023

Dassault Systèmes Abaqus 6.12 User's Manual 2012

Systèmes D Abaqus 6.12 Analysis User's Manual 2012

Tadepalli, S. C., Erdemir, A., & Cavanagh, P. R. (2011). Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. Journal of Biomechanics, 44(12), 2337-2343. doi:10.1016/j.jbiomech.2011.05.006

Hüeber, S., Mair, M., & Wohlmuth, B. I. (2005). A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Applied Numerical Mathematics, 54(3-4), 555-576. doi:10.1016/j.apnum.2004.09.019

Kleiven, S., & von Holst, H. (2002). Consequences of head size following trauma to the human head. Journal of Biomechanics, 35(2), 153-160. doi:10.1016/s0021-9290(01)00202-0

Zhou C Khalil TB King AI A new model comparing impact responses of the homogeneous and inhomogeneous human brain 1995

WILLINGER, R., TALEB, L., & KOPP, C.-M. (1995). Modal and Temporal Analysis of Head Mathematical Models. Journal of Neurotrauma, 12(4), 743-754. doi:10.1089/neu.1995.12.743

Ruan JS Khalil TB King AI Finite element modeling of direct head impact 1993 https://doi.org/10.4271/933114

Tan, L. B., Chew, F. S., Tse, K. M., Chye Tan, V. B., & Lee, H. P. (2014). Impact of complex blast waves on the human head: a computational study. International Journal for Numerical Methods in Biomedical Engineering, 30(12), 1476-1505. doi:10.1002/cnm.2668

Nahum AM Smith R Ward CC Intracranial pressure dynamics during head impact 1977

Gilchrist, M. D., & O’Donoghue, D. (2000). Simulation of the development of frontal head impact injury. Computational Mechanics, 26(3), 229-235. doi:10.1007/s004660000179

Willinger, R., Kang, H.-S., & Diaw, B. (1999). Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts. Annals of Biomedical Engineering, 27(3), 403-410. doi:10.1114/1.165

Yang, B., Tse, K.-M., Chen, N., Tan, L.-B., Zheng, Q.-Q., Yang, H.-M., … Lee, H.-P. (2014). Development of a Finite Element Head Model for the Study of Impact Head Injury. BioMed Research International, 2014, 1-14. doi:10.1155/2014/408278

Mihai, L. A., Budday, S., Holzapfel, G. A., Kuhl, E., & Goriely, A. (2017). A family of hyperelastic models for human brain tissue. Journal of the Mechanics and Physics of Solids, 106, 60-79. doi:10.1016/j.jmps.2017.05.015

Han, I. S., & Kim, Y. E. (2014). Development of a new head/brain model for the prediction of subdural hemorrhage. International Journal of Precision Engineering and Manufacturing, 15(11), 2405-2411. doi:10.1007/s12541-014-0607-3

Moran, R., Smith, J. H., & García, J. J. (2014). Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests. Journal of Biomechanics, 47(15), 3762-3766. doi:10.1016/j.jbiomech.2014.09.030

Mendis, K. K., Stalnaker, R. L., & Advani, S. H. (1995). A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue. Journal of Biomechanical Engineering, 117(3), 279-285. doi:10.1115/1.2794182

Sahoo, D., Deck, C., & Willinger, R. (2014). Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. Journal of the Mechanical Behavior of Biomedical Materials, 33, 24-42. doi:10.1016/j.jmbbm.2013.08.022

Belingardi G Chiandussi G Gaviglio I Development and validation of a new finite element model of human head Proceedings of 19th International Technical Conference on the Enhanced Safety of Vehicles 2005

Tse, K. M., Tan, L. B., Lee, S. J., Lim, S. P., & Lee, H. P. (2013). Development and validation of two subject-specific finite element models of human head against three cadaveric experiments. International Journal for Numerical Methods in Biomedical Engineering, 30(3), 397-415. doi:10.1002/cnm.2609

Yang, J. (2011). Investigation of Brain Trauma Biomechanics in Vehicle Traffic Accidents Using Human Body Computational Models. Computational Biomechanics for Medicine, 5-14. doi:10.1007/978-1-4419-9619-0_2

Mao, H., Gao, H., Cao, L., Genthikatti, V. V., & Yang, K. H. (2013). Development of high-quality hexahedral human brain meshes using feature-based multi-block approach. Computer Methods in Biomechanics and Biomedical Engineering, 16(3), 271-279. doi:10.1080/10255842.2011.617005

Yan, W., & Pangestu, O. D. (2011). A modified human head model for the study of impact head injury. Computer Methods in Biomechanics and Biomedical Engineering, 14(12), 1049-1057. doi:10.1080/10255842.2010.506435

Baeck K Goffin J Vander Sloten J The use of different CSF representations in a numerical head model and their effect on the results of FE head impact analyses 2011 http://www.dynalook.com/8th-european-ls-dyna-conference/session-7/Session7_Paper3.pdf

Kleiven, S. (2006). Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. International Journal of Crashworthiness, 11(1), 65-79. doi:10.1533/ijcr.2005.0384

Galford, J. E., & McElhaney, J. H. (1970). A viscoelastic study of scalp, brain, and dura. Journal of Biomechanics, 3(2), 211-221. doi:10.1016/0021-9290(70)90007-2

Bradshaw D Morfey C Pressure and shear response in brain injury models Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles 2001 1 10

Mooney, M. (1940). A Theory of Large Elastic Deformation. Journal of Applied Physics, 11(9), 582-592. doi:10.1063/1.1712836

Large elastic deformations of isotropic materials IV. further developments of the general theory. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397. doi:10.1098/rsta.1948.0024

Melvin JW McElhaney JH Roberts VL Development of a mechanical model of the human head-determination of tissue properties and synthetic substitute materials 1970

Raul, J.-S., Baumgartner, D., Willinger, R., & Ludes, B. (2005). Finite element modelling of human head injuries caused by a fall. International Journal of Legal Medicine, 120(4), 212-218. doi:10.1007/s00414-005-0018-1

Sahoo, D., Deck, C., Yoganandan, N., & Willinger, R. (2016). Development of skull fracture criterion based on real-world head trauma simulations using finite element head model. Journal of the Mechanical Behavior of Biomedical Materials, 57, 24-41. doi:10.1016/j.jmbbm.2015.11.014

Silver, F. H. (1994). Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach. doi:10.1007/978-94-011-0735-8

Dassault Systèmes Section 1.2.19 VUSDFLD, Abaqus User Subroutines Reference Manual 2012

Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5

Harrison, N. M., McDonnell, P., Mullins, L., Wilson, N., O’Mahoney, D., & McHugh, P. E. (2012). Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomechanics and Modeling in Mechanobiology, 12(2), 225-241. doi:10.1007/s10237-012-0394-7

Vavalle, N. A., Davis, M. L., Stitzel, J. D., & Gayzik, F. S. (2015). Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts. Annals of Biomedical Engineering, 43(9), 2163-2174. doi:10.1007/s10439-015-1286-7

Delye, H., Verschueren, P., Depreitere, B., Van Lierde, C., Verpoest, I., Berckmans, D., … Goffin, J. (2005). Biomechanics of Frontal Skull Fracture. Solid Mechanics and Its Applications, 185-193. doi:10.1007/1-4020-3796-1_19

Ruan, J. S., Khalil, T., & King, A. I. (1994). Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis. Journal of Biomechanical Engineering, 116(1), 44-50. doi:10.1115/1.2895703

Chafi, M. S., Dirisala, V., Karami, G., & Ziejewski, M. (2009). A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(8), 1003-1019. doi:10.1243/09544119jeim631

Ruan, J., & Prasad, P. (2006). The influence of human head tissue properties on intracranial pressure response during direct head impact. International Journal of Vehicle Safety, 1(4), 281. doi:10.1504/ijvs.2006.011230

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem