- -

Assessment of mechanical properties of human head tissues for trauma modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of mechanical properties of human head tissues for trauma modelling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lozano-Mínguez, Estívaliz es_ES
dc.contributor.author Palomar-Toledano, Marta es_ES
dc.contributor.author Infante, Diego es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2020-02-07T21:02:34Z
dc.date.available 2020-02-07T21:02:34Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136478
dc.description.abstract [EN] Many discrepancies are found in the literature regarding the damage and constitutive models for head tissues as well as the values of the constants involved in the constitutive equations. Their proper definition is required for consistent numerical model performance when predicting human head behaviour, and hence skull fracture and brain damage. The objective of this research is to perform a critical review of constitutive models and damage indicators describing human head tissue response under impact loading. A 3D finite element human head model has been generated by using computed tomography images, which has been validated through the comparison to experimental data in the literature. The threshold values of the skull and the scalp that lead to fracture have been analysed. We conclude that (1) compact bone properties are critical in skull fracture, (2) the elastic constants of the cerebrospinal fluid affect the intracranial pressure distribution, and (3) the consideration of brain tissue as a nearly incompressible solid with a high (but not complete) water content offers pressure responses consistent with the experimental data. es_ES
dc.description.sponsorship Generalitat Valenciana, Grant/Award Number: PROMETEO 2016/007; Ministerio de Economia y Compatitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: RTC-2015-3887-8 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal for Numerical Methods in Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Head impact response es_ES
dc.subject Head tissues es_ES
dc.subject Human head model es_ES
dc.subject Intracranial pressure es_ES
dc.subject Skull fracture es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Assessment of mechanical properties of human head tissues for trauma modelling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cnm.2962 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-3887-8Q4618002BC.VALENCIANA/ES/DISEÑO AVANZADO Y FABRICACIÓN DE PROTECCIONES PERSONALES INTEGRALES DE USO MILITAR Y PARA FUERZAS Y CUERPOS DE SEGURIDAD DEL ESTADO (PROTEC_DAF)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Lozano-Mínguez, E.; Palomar-Toledano, M.; Infante, D.; Rupérez Moreno, MJ.; Giner Maravilla, E. (2018). Assessment of mechanical properties of human head tissues for trauma modelling. International Journal for Numerical Methods in Biomedical Engineering. 34(5):1-17. https://doi.org/10.1002/cnm.2962 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cnm.2962 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2040-7947 es_ES
dc.relation.pasarela S\352744 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 22(5), 341-353. doi:10.3233/nre-2007-22502 es_ES
dc.description.references Meaney, D. F., Morrison, B., & Dale Bass, C. (2014). The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden. Journal of Biomechanical Engineering, 136(2). doi:10.1115/1.4026364 es_ES
dc.description.references Report Violence and Injury Prevention and Disability (VIP)-neurotrauma 2010 http://www.who.int/violence_injury_prevention/road_traffic/activities/neurotrauma/en/ es_ES
dc.description.references Deng, X., Potula, S., Grewal, H., Solanki, K. N., Tschopp, M. A., & Horstemeyer, M. F. (2013). Finite element analysis of occupant head injuries: Parametric effects of the side curtain airbag deployment interaction with a dummy head in a side impact crash. Accident Analysis & Prevention, 55, 232-241. doi:10.1016/j.aap.2013.03.016 es_ES
dc.description.references Marjoux, D., Baumgartner, D., Deck, C., & Willinger, R. (2008). Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accident Analysis & Prevention, 40(3), 1135-1148. doi:10.1016/j.aap.2007.12.006 es_ES
dc.description.references Bolander, R., Mathie, B., Bir, C., Ritzel, D., & VandeVord, P. (2011). Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat when Exposed to a Shock Wave. Annals of Biomedical Engineering, 39(10), 2550-2559. doi:10.1007/s10439-011-0343-0 es_ES
dc.description.references Li, G., Zhang, J., Wang, K., Wang, M., Gao, C., & Ma, C. (2016). Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress. Journal of the Mechanical Behavior of Biomedical Materials, 57, 224-234. doi:10.1016/j.jmbbm.2015.12.002 es_ES
dc.description.references YOGANANDAN, N., PINTAR, F. A., SANCES, A., WALSH, P. R., EWING, C. L., THOMAS, D. J., & SNYDER, R. G. (1995). Biomechanics of Skull Fracture. Journal of Neurotrauma, 12(4), 659-668. doi:10.1089/neu.1995.12.659 es_ES
dc.description.references Motherway, J. A., Verschueren, P., Van der Perre, G., Vander Sloten, J., & Gilchrist, M. D. (2009). The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position. Journal of Biomechanics, 42(13), 2129-2135. doi:10.1016/j.jbiomech.2009.05.030 es_ES
dc.description.references Lakatos, É., Magyar, L., & Bojtár, I. (2014). Material Properties of the Mandibular Trabecular Bone. Journal of Medical Engineering, 2014, 1-7. doi:10.1155/2014/470539 es_ES
dc.description.references Boruah, S., Subit, D. L., Paskoff, G. R., Shender, B. S., Crandall, J. R., & Salzar, R. S. (2017). Influence of bone microstructure on the mechanical properties of skull cortical bone – A combined experimental and computational approach. Journal of the Mechanical Behavior of Biomedical Materials, 65, 688-704. doi:10.1016/j.jmbbm.2016.09.041 es_ES
dc.description.references McElhaney, J. H., Fogle, J. L., Melvin, J. W., Haynes, R. R., Roberts, V. L., & Alem, N. M. (1970). Mechanical properties of cranial bone. Journal of Biomechanics, 3(5), 495-511. doi:10.1016/0021-9290(70)90059-x es_ES
dc.description.references Kleiven, S. (2003). Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma. Journal of Neurotrauma, 20(4), 365-379. doi:10.1089/089771503765172327 es_ES
dc.description.references Miller, L. E., Urban, J. E., & Stitzel, J. D. (2016). Development and validation of an atlas-based finite element brain model. Biomechanics and Modeling in Mechanobiology, 15(5), 1201-1214. doi:10.1007/s10237-015-0754-1 es_ES
dc.description.references Tse, K. M., Tan, L. B., Lee, S. J., Lim, S. P., & Lee, H. P. (2015). Investigation of the relationship between facial injuries and traumatic brain injuries using a realistic subject-specific finite element head model. Accident Analysis & Prevention, 79, 13-32. doi:10.1016/j.aap.2015.03.012 es_ES
dc.description.references Kimpara, H., Nakahira, Y., Iwamoto, M., Miki, K., Ichihara, K., Kawano, S., & Taguchi, T. (2006). Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model. SAE Technical Paper Series. doi:10.4271/2006-22-0019 es_ES
dc.description.references Brands, D. W. A., Bovendeerd, P. H. M., & Wismans, J. S. H. M. (2002). On the Potential Importance of Non-Linear Viscoelastic Material Modelling for Numerical Prediction of Brain Tissue Response: Test and Application. SAE Technical Paper Series. doi:10.4271/2002-22-0006 es_ES
dc.description.references Kleiven, S. (2007). Predictors for Traumatic Brain Injuries Evaluated through Accident Reconstructions. SAE Technical Paper Series. doi:10.4271/2007-22-0003 es_ES
dc.description.references Ho, J., Zhou, Z., Li, X., & Kleiven, S. (2017). The peculiar properties of the falx and tentorium in brain injury biomechanics. Journal of Biomechanics, 60, 243-247. doi:10.1016/j.jbiomech.2017.06.023 es_ES
dc.description.references Dassault Systèmes Abaqus 6.12 User's Manual 2012 es_ES
dc.description.references Systèmes D Abaqus 6.12 Analysis User's Manual 2012 es_ES
dc.description.references Tadepalli, S. C., Erdemir, A., & Cavanagh, P. R. (2011). Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. Journal of Biomechanics, 44(12), 2337-2343. doi:10.1016/j.jbiomech.2011.05.006 es_ES
dc.description.references Hüeber, S., Mair, M., & Wohlmuth, B. I. (2005). A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Applied Numerical Mathematics, 54(3-4), 555-576. doi:10.1016/j.apnum.2004.09.019 es_ES
dc.description.references Kleiven, S., & von Holst, H. (2002). Consequences of head size following trauma to the human head. Journal of Biomechanics, 35(2), 153-160. doi:10.1016/s0021-9290(01)00202-0 es_ES
dc.description.references Zhou C Khalil TB King AI A new model comparing impact responses of the homogeneous and inhomogeneous human brain 1995 es_ES
dc.description.references WILLINGER, R., TALEB, L., & KOPP, C.-M. (1995). Modal and Temporal Analysis of Head Mathematical Models. Journal of Neurotrauma, 12(4), 743-754. doi:10.1089/neu.1995.12.743 es_ES
dc.description.references Ruan JS Khalil TB King AI Finite element modeling of direct head impact 1993 https://doi.org/10.4271/933114 es_ES
dc.description.references Tan, L. B., Chew, F. S., Tse, K. M., Chye Tan, V. B., & Lee, H. P. (2014). Impact of complex blast waves on the human head: a computational study. International Journal for Numerical Methods in Biomedical Engineering, 30(12), 1476-1505. doi:10.1002/cnm.2668 es_ES
dc.description.references Nahum AM Smith R Ward CC Intracranial pressure dynamics during head impact 1977 es_ES
dc.description.references Gilchrist, M. D., & O’Donoghue, D. (2000). Simulation of the development of frontal head impact injury. Computational Mechanics, 26(3), 229-235. doi:10.1007/s004660000179 es_ES
dc.description.references Willinger, R., Kang, H.-S., & Diaw, B. (1999). Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts. Annals of Biomedical Engineering, 27(3), 403-410. doi:10.1114/1.165 es_ES
dc.description.references Yang, B., Tse, K.-M., Chen, N., Tan, L.-B., Zheng, Q.-Q., Yang, H.-M., … Lee, H.-P. (2014). Development of a Finite Element Head Model for the Study of Impact Head Injury. BioMed Research International, 2014, 1-14. doi:10.1155/2014/408278 es_ES
dc.description.references Mihai, L. A., Budday, S., Holzapfel, G. A., Kuhl, E., & Goriely, A. (2017). A family of hyperelastic models for human brain tissue. Journal of the Mechanics and Physics of Solids, 106, 60-79. doi:10.1016/j.jmps.2017.05.015 es_ES
dc.description.references Han, I. S., & Kim, Y. E. (2014). Development of a new head/brain model for the prediction of subdural hemorrhage. International Journal of Precision Engineering and Manufacturing, 15(11), 2405-2411. doi:10.1007/s12541-014-0607-3 es_ES
dc.description.references Moran, R., Smith, J. H., & García, J. J. (2014). Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests. Journal of Biomechanics, 47(15), 3762-3766. doi:10.1016/j.jbiomech.2014.09.030 es_ES
dc.description.references Mendis, K. K., Stalnaker, R. L., & Advani, S. H. (1995). A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue. Journal of Biomechanical Engineering, 117(3), 279-285. doi:10.1115/1.2794182 es_ES
dc.description.references Sahoo, D., Deck, C., & Willinger, R. (2014). Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. Journal of the Mechanical Behavior of Biomedical Materials, 33, 24-42. doi:10.1016/j.jmbbm.2013.08.022 es_ES
dc.description.references Belingardi G Chiandussi G Gaviglio I Development and validation of a new finite element model of human head Proceedings of 19th International Technical Conference on the Enhanced Safety of Vehicles 2005 es_ES
dc.description.references Tse, K. M., Tan, L. B., Lee, S. J., Lim, S. P., & Lee, H. P. (2013). Development and validation of two subject-specific finite element models of human head against three cadaveric experiments. International Journal for Numerical Methods in Biomedical Engineering, 30(3), 397-415. doi:10.1002/cnm.2609 es_ES
dc.description.references Yang, J. (2011). Investigation of Brain Trauma Biomechanics in Vehicle Traffic Accidents Using Human Body Computational Models. Computational Biomechanics for Medicine, 5-14. doi:10.1007/978-1-4419-9619-0_2 es_ES
dc.description.references Mao, H., Gao, H., Cao, L., Genthikatti, V. V., & Yang, K. H. (2013). Development of high-quality hexahedral human brain meshes using feature-based multi-block approach. Computer Methods in Biomechanics and Biomedical Engineering, 16(3), 271-279. doi:10.1080/10255842.2011.617005 es_ES
dc.description.references Yan, W., & Pangestu, O. D. (2011). A modified human head model for the study of impact head injury. Computer Methods in Biomechanics and Biomedical Engineering, 14(12), 1049-1057. doi:10.1080/10255842.2010.506435 es_ES
dc.description.references Baeck K Goffin J Vander Sloten J The use of different CSF representations in a numerical head model and their effect on the results of FE head impact analyses 2011 http://www.dynalook.com/8th-european-ls-dyna-conference/session-7/Session7_Paper3.pdf es_ES
dc.description.references Kleiven, S. (2006). Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. International Journal of Crashworthiness, 11(1), 65-79. doi:10.1533/ijcr.2005.0384 es_ES
dc.description.references Galford, J. E., & McElhaney, J. H. (1970). A viscoelastic study of scalp, brain, and dura. Journal of Biomechanics, 3(2), 211-221. doi:10.1016/0021-9290(70)90007-2 es_ES
dc.description.references Bradshaw D Morfey C Pressure and shear response in brain injury models Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles 2001 1 10 es_ES
dc.description.references Mooney, M. (1940). A Theory of Large Elastic Deformation. Journal of Applied Physics, 11(9), 582-592. doi:10.1063/1.1712836 es_ES
dc.description.references Large elastic deformations of isotropic materials IV. further developments of the general theory. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397. doi:10.1098/rsta.1948.0024 es_ES
dc.description.references Melvin JW McElhaney JH Roberts VL Development of a mechanical model of the human head-determination of tissue properties and synthetic substitute materials 1970 es_ES
dc.description.references Raul, J.-S., Baumgartner, D., Willinger, R., & Ludes, B. (2005). Finite element modelling of human head injuries caused by a fall. International Journal of Legal Medicine, 120(4), 212-218. doi:10.1007/s00414-005-0018-1 es_ES
dc.description.references Sahoo, D., Deck, C., Yoganandan, N., & Willinger, R. (2016). Development of skull fracture criterion based on real-world head trauma simulations using finite element head model. Journal of the Mechanical Behavior of Biomedical Materials, 57, 24-41. doi:10.1016/j.jmbbm.2015.11.014 es_ES
dc.description.references Silver, F. H. (1994). Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach. doi:10.1007/978-94-011-0735-8 es_ES
dc.description.references Dassault Systèmes Section 1.2.19 VUSDFLD, Abaqus User Subroutines Reference Manual 2012 es_ES
dc.description.references Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5 es_ES
dc.description.references Harrison, N. M., McDonnell, P., Mullins, L., Wilson, N., O’Mahoney, D., & McHugh, P. E. (2012). Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomechanics and Modeling in Mechanobiology, 12(2), 225-241. doi:10.1007/s10237-012-0394-7 es_ES
dc.description.references Vavalle, N. A., Davis, M. L., Stitzel, J. D., & Gayzik, F. S. (2015). Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts. Annals of Biomedical Engineering, 43(9), 2163-2174. doi:10.1007/s10439-015-1286-7 es_ES
dc.description.references Delye, H., Verschueren, P., Depreitere, B., Van Lierde, C., Verpoest, I., Berckmans, D., … Goffin, J. (2005). Biomechanics of Frontal Skull Fracture. Solid Mechanics and Its Applications, 185-193. doi:10.1007/1-4020-3796-1_19 es_ES
dc.description.references Ruan, J. S., Khalil, T., & King, A. I. (1994). Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis. Journal of Biomechanical Engineering, 116(1), 44-50. doi:10.1115/1.2895703 es_ES
dc.description.references Chafi, M. S., Dirisala, V., Karami, G., & Ziejewski, M. (2009). A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(8), 1003-1019. doi:10.1243/09544119jeim631 es_ES
dc.description.references Ruan, J., & Prasad, P. (2006). The influence of human head tissue properties on intracranial pressure response during direct head impact. International Journal of Vehicle Safety, 1(4), 281. doi:10.1504/ijvs.2006.011230 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem