- -

Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alecrim, Laís es_ES
dc.contributor.author Ferreira, Julieta es_ES
dc.contributor.author Salvador Moya, Mª Dolores es_ES
dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.contributor.author Pallone, Eliria es_ES
dc.date.accessioned 2020-02-08T21:02:13Z
dc.date.available 2020-02-08T21:02:13Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1546-542X es_ES
dc.identifier.uri http://hdl.handle.net/10251/136504
dc.description.abstract [EN] This study aims to investigate the dry sliding wear behavior of Al2O3-5vol.% NbC nanocomposites sintered by two different consolidation techniques: conventional sintering (CS) and spark plasma sintering (SPS) at temperatures ranging from 1450 to 1600 degrees C. The dry sliding wear tests were performed on a tribometer with a ball-on-disc configuration using an Al2O3 ball as a counterpart material, with a normal contact load of 15 and 30 N, a sliding distance of 2000m and a sliding speed of 0.1m/s at room temperature and ambient environment. The sintering methods, mechanical properties and applied load acted directly on the wear mechanism of the nanocomposites. The samples sintered by SPS exhibited higher densification and hardness, in addition to a lower friction coefficient and wear rate. Based on the wear rate, these nanocomposites exhibited a moderate regime with 15N of load, and several regimes when 30 N of applied load was used. The main wear mechanisms observed were plastic deformation, abrasion and grain pull-out. The excellent results show that Al2O3-NbC nanocomposites are ideal for the manufacture of new products such as cutting tools. es_ES
dc.description.sponsorship Brazilian institution CAPES for the project CAPES-PVE A086/2013, Grant/Award Number: 23038.009604/2013-12 es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof International Journal of Applied Ceramic Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alumina-niobium carbide es_ES
dc.subject Ceramic-matrix composite es_ES
dc.subject Cutting tools es_ES
dc.subject Sliding wear es_ES
dc.subject Spark plasma sintering es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijac.12800 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-19839/ES/IJCI-2014-19839/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//A086%2F2013/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Alecrim, L.; Ferreira, J.; Salvador Moya, MD.; Borrell Tomás, MA.; Pallone, E. (2018). Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites. International Journal of Applied Ceramic Technology. 15(2):418-425. https://doi.org/10.1111/ijac.12800 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ijac.12800 es_ES
dc.description.upvformatpinicio 418 es_ES
dc.description.upvformatpfin 425 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\355277 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.description.references Wahi, R. P., & Ilschner, B. (1980). Fracture behaviour of composites based on Al2O3-TiC. Journal of Materials Science, 15(4), 875-885. doi:10.1007/bf00552097 es_ES
dc.description.references Tedesco, N. R., Pallone, E. M. J. A., & Tomasi, R. (2010). Effects of the Pin-on-Disc Parameters on the Wear of Alumina. Advances in Science and Technology, 65, 39-44. doi:10.4028/www.scientific.net/ast.65.39 es_ES
dc.description.references Rodriguez-Suarez, T., Bartolomé, J. F., Smirnov, A., Lopez-Esteban, S., Torrecillas, R., & Moya, J. S. (2011). Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. Journal of the European Ceramic Society, 31(8), 1389-1395. doi:10.1016/j.jeurceramsoc.2011.02.011 es_ES
dc.description.references Gustafsson, S., Falk, L. K. L., Lidén, E., & Carlström, E. (2008). Pressureless sintered Al2O3–SiC nanocomposites. Ceramics International, 34(7), 1609-1615. doi:10.1016/j.ceramint.2007.05.005 es_ES
dc.description.references Qu, H., & Zhu, S. (2013). Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceramics International, 39(5), 5415-5425. doi:10.1016/j.ceramint.2012.12.049 es_ES
dc.description.references Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Sliding wear behavior of Al2O3-NbC composites obtained by conventional and nonconventional techniques. Tribology International, 110, 216-221. doi:10.1016/j.triboint.2017.02.028 es_ES
dc.description.references Pasotti, R. M. R., Bressiani, A. H. A., & Bressiani, J. (1998). Sintering of alumina-niobium carbide composite. International Journal of Refractory Metals and Hard Materials, 16(4-6), 423-427. doi:10.1016/s0263-4368(98)00053-5 es_ES
dc.description.references Acchar, W., & Segadães, A. M. (2009). Properties of sintered alumina reinforced with niobium carbide. International Journal of Refractory Metals and Hard Materials, 27(2), 427-430. doi:10.1016/j.ijrmhm.2008.05.004 es_ES
dc.description.references Huang, S. G., Liu, R. L., Li, L., Van der Biest, O., & Vleugels, J. (2008). NbC as grain growth inhibitor and carbide in WC–Co hardmetals. International Journal of Refractory Metals and Hard Materials, 26(5), 389-395. doi:10.1016/j.ijrmhm.2007.09.003 es_ES
dc.description.references Santos, C., Maeda, L. D., Cairo, C. A. A., & Acchar, W. (2008). Mechanical properties of hot-pressed ZrO2–NbC ceramic composites. International Journal of Refractory Metals and Hard Materials, 26(1), 14-18. doi:10.1016/j.ijrmhm.2007.01.008 es_ES
dc.description.references Meng, F., Liu, C., Zhang, F., Tian, Z., & Huang, W. (2012). Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering. Journal of Alloys and Compounds, 512(1), 63-67. doi:10.1016/j.jallcom.2011.09.015 es_ES
dc.description.references Sun, L., Yang, T., Jia, C., & Xiong, J. (2011). VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 29(2), 147-152. doi:10.1016/j.ijrmhm.2010.09.004 es_ES
dc.description.references Bonache, V., Salvador, M. D., Fernández, A., & Borrell, A. (2011). Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies. International Journal of Refractory Metals and Hard Materials, 29(2), 202-208. doi:10.1016/j.ijrmhm.2010.10.007 es_ES
dc.description.references Sun, X., Wang, Y., & Li, D. Y. (2013). Mechanical properties and erosion resistance of ceria nano-particle-doped ultrafine WC–12Co composite prepared by spark plasma sintering. Wear, 301(1-2), 406-414. doi:10.1016/j.wear.2013.01.113 es_ES
dc.description.references Pallone, E. M. J. ., Trombini, V., Botta F, W. ., & Tomasi, R. (2003). Synthesis of Al2O3–NbC by reactive milling and production of nanocomposites. Journal of Materials Processing Technology, 143-144, 185-190. doi:10.1016/s0924-0136(03)00411-4 es_ES
dc.description.references Botta F, W. ., Tomasi, R., Pallone, E. M. J. ., & Yavari, A. . (2001). Nanostructured composites obtained by reactive milling. Scripta Materialia, 44(8-9), 1735-1740. doi:10.1016/s1359-6462(01)00789-8 es_ES
dc.description.references ISO 3078-1983 Hardmetals, vickers hardness test 1983 es_ES
dc.description.references Chen, W.-H., Lin, H.-T., Chen, J., Nayak, P. K., Lee, A. C., Lu, H.-H., & Huang, J.-L. (2016). Microstructure and wear behavior of spark plasma sintering sintered Al2O3/WC-based composite. International Journal of Refractory Metals and Hard Materials, 54, 279-283. doi:10.1016/j.ijrmhm.2015.07.030 es_ES
dc.description.references Espinosa-Fernández, L., Borrell, A., Salvador, M. D., & Gutierrez-Gonzalez, C. F. (2013). Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear, 307(1-2), 60-67. doi:10.1016/j.wear.2013.08.003 es_ES
dc.description.references Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Effect of reinforcement NbC phase on the mechanical properties of Al2O3-NbC nanocomposites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 64, 255-260. doi:10.1016/j.ijrmhm.2016.10.021 es_ES
dc.description.references Bonny, K., De Baets, P., Vleugels, J., Huang, S., & Lauwers, B. (2009). Tribological Characteristics of WC-Ni and WC-Co Cemented Carbide in Dry Reciprocating Sliding Contact. Tribology Transactions, 52(4), 481-491. doi:10.1080/10402000802716921 es_ES
dc.description.references Kato, K., & Adachi, K. (2002). Wear of advanced ceramics. Wear, 253(11-12), 1097-1104. doi:10.1016/s0043-1648(02)00240-5 es_ES
dc.description.references Pasaribu, H. R., Sloetjes, J. W., & Schipper, D. J. (2004). The transition of mild to severe wear of ceramics. Wear, 256(6), 585-591. doi:10.1016/j.wear.2003.10.025 es_ES
dc.description.references Tucci, A., & Esposito, L. (2000). Second phases and material transfer in alumina ceramics sliding systems. Wear, 245(1-2), 76-83. doi:10.1016/s0043-1648(00)00467-1 es_ES
dc.description.references Borrell, A., Torrecillas, R., Rocha, V. G., Fernández, A., Bonache, V., & Salvador, M. D. (2012). Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic–CNFs composites. Wear, 274-275, 94-99. doi:10.1016/j.wear.2011.08.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem