- -

Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites

Mostrar el registro completo del ítem

Alecrim, L.; Ferreira, J.; Salvador Moya, MD.; Borrell Tomás, MA.; Pallone, E. (2018). Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites. International Journal of Applied Ceramic Technology. 15(2):418-425. https://doi.org/10.1111/ijac.12800

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136504

Ficheros en el ítem

Metadatos del ítem

Título: Wear behavior of conventional and spark plasma sintered Al2O3-NbC nanocomposites
Autor: Alecrim, Laís Ferreira, Julieta Salvador Moya, Mª Dolores Borrell Tomás, María Amparo Pallone, Eliria
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] This study aims to investigate the dry sliding wear behavior of Al2O3-5vol.% NbC nanocomposites sintered by two different consolidation techniques: conventional sintering (CS) and spark plasma sintering (SPS) at ...[+]
Palabras clave: Alumina-niobium carbide , Ceramic-matrix composite , Cutting tools , Sliding wear , Spark plasma sintering
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Applied Ceramic Technology. (issn: 1546-542X )
DOI: 10.1111/ijac.12800
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/ijac.12800
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2014-19839/ES/IJCI-2014-19839/
info:eu-repo/grantAgreement/CAPES//A086%2F2013/
Agradecimientos:
Brazilian institution CAPES for the project CAPES-PVE A086/2013, Grant/Award Number: 23038.009604/2013-12
Tipo: Artículo

References

Wahi, R. P., & Ilschner, B. (1980). Fracture behaviour of composites based on Al2O3-TiC. Journal of Materials Science, 15(4), 875-885. doi:10.1007/bf00552097

Tedesco, N. R., Pallone, E. M. J. A., & Tomasi, R. (2010). Effects of the Pin-on-Disc Parameters on the Wear of Alumina. Advances in Science and Technology, 65, 39-44. doi:10.4028/www.scientific.net/ast.65.39

Rodriguez-Suarez, T., Bartolomé, J. F., Smirnov, A., Lopez-Esteban, S., Torrecillas, R., & Moya, J. S. (2011). Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. Journal of the European Ceramic Society, 31(8), 1389-1395. doi:10.1016/j.jeurceramsoc.2011.02.011 [+]
Wahi, R. P., & Ilschner, B. (1980). Fracture behaviour of composites based on Al2O3-TiC. Journal of Materials Science, 15(4), 875-885. doi:10.1007/bf00552097

Tedesco, N. R., Pallone, E. M. J. A., & Tomasi, R. (2010). Effects of the Pin-on-Disc Parameters on the Wear of Alumina. Advances in Science and Technology, 65, 39-44. doi:10.4028/www.scientific.net/ast.65.39

Rodriguez-Suarez, T., Bartolomé, J. F., Smirnov, A., Lopez-Esteban, S., Torrecillas, R., & Moya, J. S. (2011). Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. Journal of the European Ceramic Society, 31(8), 1389-1395. doi:10.1016/j.jeurceramsoc.2011.02.011

Gustafsson, S., Falk, L. K. L., Lidén, E., & Carlström, E. (2008). Pressureless sintered Al2O3–SiC nanocomposites. Ceramics International, 34(7), 1609-1615. doi:10.1016/j.ceramint.2007.05.005

Qu, H., & Zhu, S. (2013). Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceramics International, 39(5), 5415-5425. doi:10.1016/j.ceramint.2012.12.049

Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Sliding wear behavior of Al2O3-NbC composites obtained by conventional and nonconventional techniques. Tribology International, 110, 216-221. doi:10.1016/j.triboint.2017.02.028

Pasotti, R. M. R., Bressiani, A. H. A., & Bressiani, J. (1998). Sintering of alumina-niobium carbide composite. International Journal of Refractory Metals and Hard Materials, 16(4-6), 423-427. doi:10.1016/s0263-4368(98)00053-5

Acchar, W., & Segadães, A. M. (2009). Properties of sintered alumina reinforced with niobium carbide. International Journal of Refractory Metals and Hard Materials, 27(2), 427-430. doi:10.1016/j.ijrmhm.2008.05.004

Huang, S. G., Liu, R. L., Li, L., Van der Biest, O., & Vleugels, J. (2008). NbC as grain growth inhibitor and carbide in WC–Co hardmetals. International Journal of Refractory Metals and Hard Materials, 26(5), 389-395. doi:10.1016/j.ijrmhm.2007.09.003

Santos, C., Maeda, L. D., Cairo, C. A. A., & Acchar, W. (2008). Mechanical properties of hot-pressed ZrO2–NbC ceramic composites. International Journal of Refractory Metals and Hard Materials, 26(1), 14-18. doi:10.1016/j.ijrmhm.2007.01.008

Meng, F., Liu, C., Zhang, F., Tian, Z., & Huang, W. (2012). Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering. Journal of Alloys and Compounds, 512(1), 63-67. doi:10.1016/j.jallcom.2011.09.015

Sun, L., Yang, T., Jia, C., & Xiong, J. (2011). VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 29(2), 147-152. doi:10.1016/j.ijrmhm.2010.09.004

Bonache, V., Salvador, M. D., Fernández, A., & Borrell, A. (2011). Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies. International Journal of Refractory Metals and Hard Materials, 29(2), 202-208. doi:10.1016/j.ijrmhm.2010.10.007

Sun, X., Wang, Y., & Li, D. Y. (2013). Mechanical properties and erosion resistance of ceria nano-particle-doped ultrafine WC–12Co composite prepared by spark plasma sintering. Wear, 301(1-2), 406-414. doi:10.1016/j.wear.2013.01.113

Pallone, E. M. J. ., Trombini, V., Botta F, W. ., & Tomasi, R. (2003). Synthesis of Al2O3–NbC by reactive milling and production of nanocomposites. Journal of Materials Processing Technology, 143-144, 185-190. doi:10.1016/s0924-0136(03)00411-4

Botta F, W. ., Tomasi, R., Pallone, E. M. J. ., & Yavari, A. . (2001). Nanostructured composites obtained by reactive milling. Scripta Materialia, 44(8-9), 1735-1740. doi:10.1016/s1359-6462(01)00789-8

ISO 3078-1983 Hardmetals, vickers hardness test 1983

Chen, W.-H., Lin, H.-T., Chen, J., Nayak, P. K., Lee, A. C., Lu, H.-H., & Huang, J.-L. (2016). Microstructure and wear behavior of spark plasma sintering sintered Al2O3/WC-based composite. International Journal of Refractory Metals and Hard Materials, 54, 279-283. doi:10.1016/j.ijrmhm.2015.07.030

Espinosa-Fernández, L., Borrell, A., Salvador, M. D., & Gutierrez-Gonzalez, C. F. (2013). Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear, 307(1-2), 60-67. doi:10.1016/j.wear.2013.08.003

Alecrim, L. R. R., Ferreira, J. A., Gutiérrez-González, C. F., Salvador, M. D., Borrell, A., & Pallone, E. M. J. A. (2017). Effect of reinforcement NbC phase on the mechanical properties of Al2O3-NbC nanocomposites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 64, 255-260. doi:10.1016/j.ijrmhm.2016.10.021

Bonny, K., De Baets, P., Vleugels, J., Huang, S., & Lauwers, B. (2009). Tribological Characteristics of WC-Ni and WC-Co Cemented Carbide in Dry Reciprocating Sliding Contact. Tribology Transactions, 52(4), 481-491. doi:10.1080/10402000802716921

Kato, K., & Adachi, K. (2002). Wear of advanced ceramics. Wear, 253(11-12), 1097-1104. doi:10.1016/s0043-1648(02)00240-5

Pasaribu, H. R., Sloetjes, J. W., & Schipper, D. J. (2004). The transition of mild to severe wear of ceramics. Wear, 256(6), 585-591. doi:10.1016/j.wear.2003.10.025

Tucci, A., & Esposito, L. (2000). Second phases and material transfer in alumina ceramics sliding systems. Wear, 245(1-2), 76-83. doi:10.1016/s0043-1648(00)00467-1

Borrell, A., Torrecillas, R., Rocha, V. G., Fernández, A., Bonache, V., & Salvador, M. D. (2012). Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic–CNFs composites. Wear, 274-275, 94-99. doi:10.1016/j.wear.2011.08.013

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem