- -

Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

El jueves 27, desde las 00:00 hasta las 10:00 horas, el sistema se apagará debido a tareas de mantenimiento.

Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes

Show full item record

Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, A.; Wheeler, G.; Dalmay, T.... (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics. 11(10). https://doi.org/10.1002/jbio.201800030

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136756

Files in this item

Item Metadata

Title: Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes
Author: Ruiz-Tórtola, Ángela Prats-Quílez, Francisco Gonzalez-Lucas, Daniel Bañuls Polo, María-José Maquieira Catala, Angel Wheeler, Guy Dalmay, Tamas Griol Barres, Amadeu Hurtado Montañés, Juan Bohlmann, Helge Götzen, Reiner García-Rupérez, Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probesupon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensorsis ...[+]
Subjects: Conformational change , Molecular beacon , Photonic bandgap , Photonic biosensor , Silicon photonics
Copyrigths: Reconocimiento (by)
Source:
Journal of Biophotonics. (issn: 1864-063X )
DOI: 10.1002/jbio.201800030
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/jbio.201800030
Project ID:
info:eu-repo/grantAgreement/EC/H2020/644242/EU/Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases/
AEI/CTQ2016-75749-R
Thanks:
Horizon 2020 Framework Programme, Grant/Award Number: ICT-644242; MINECO, Grant/Award Number: CTQ/2016/75749-R
Type: Artículo

References

Patel, P. . (2002). (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC Trends in Analytical Chemistry, 21(2), 96-115. doi:10.1016/s0165-9936(01)00136-4

Pérez-López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625-639. doi:10.1016/j.tifs.2011.04.001

Zanchetta, G., Lanfranco, R., Giavazzi, F., Bellini, T., & Buscaglia, M. (2017). Emerging applications of label-free optical biosensors. Nanophotonics, 6(4), 627-645. doi:10.1515/nanoph-2016-0158 [+]
Patel, P. . (2002). (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC Trends in Analytical Chemistry, 21(2), 96-115. doi:10.1016/s0165-9936(01)00136-4

Pérez-López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625-639. doi:10.1016/j.tifs.2011.04.001

Zanchetta, G., Lanfranco, R., Giavazzi, F., Bellini, T., & Buscaglia, M. (2017). Emerging applications of label-free optical biosensors. Nanophotonics, 6(4), 627-645. doi:10.1515/nanoph-2016-0158

Yáñez-Sedeño, P., Agüí, L., Villalonga, R., & Pingarrón, J. M. (2014). Biosensors in forensic analysis. A review. Analytica Chimica Acta, 823, 1-19. doi:10.1016/j.aca.2014.03.011

Ricciardi, A., Crescitelli, A., Vaiano, P., Quero, G., Consales, M., Pisco, M., … Cusano, A. (2015). Lab-on-fiber technology: a new vision for chemical and biological sensing. The Analyst, 140(24), 8068-8079. doi:10.1039/c5an01241d

Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368

Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728

Bañuls, M.-J., González-Pedro, V., Barrios, C. A., Puchades, R., & Maquieira, Á. (2010). Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosensors and Bioelectronics, 25(6), 1460-1466. doi:10.1016/j.bios.2009.10.048

Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA Biosensors and Microarrays. Chemical Reviews, 108(1), 109-139. doi:10.1021/cr0684467

Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2012). Development of Oligonucleotide Microarrays onto Si-Based Surfaces via Thioether Linkage Mediated by UV Irradiation. Bioconjugate Chemistry, 23(10), 2121-2128. doi:10.1021/bc300333a

Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020q

Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303

Dubertret, B., Calame, M., & Libchaber, A. J. (2001). Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology, 19(4), 365-370. doi:10.1038/86762

Joshi, H. S., & Tor, Y. (2001). Metal-containing DNA hairpins as hybridization probes. Chemical Communications, (6), 549-550. doi:10.1039/b100036p

Heinlein, T., Knemeyer, J.-P., Piestert, O., & Sauer, M. (2003). Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. The Journal of Physical Chemistry B, 107(31), 7957-7964. doi:10.1021/jp0348068

Williams, D. J., & Hall, K. B. (1996). Thermodynamic Comparison of the Salt Dependence of Natural RNA Hairpins and RNA Hairpins with Non-Nucleotide Spacers†. Biochemistry, 35(46), 14665-14670. doi:10.1021/bi961654g

Riccelli, P. V. (2001). Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic Acids Research, 29(4), 996-1004. doi:10.1093/nar/29.4.996

Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797

Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031

Van Lierop, D., Faulds, K., & Graham, D. (2011). Separation Free DNA Detection Using Surface Enhanced Raman Scattering. Analytical Chemistry, 83(15), 5817-5821. doi:10.1021/ac200514e

Kotnala, A., & Gordon, R. (2014). Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. Biomedical Optics Express, 5(6), 1886. doi:10.1364/boe.5.001886

Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007

Miao, X., Guo, X., Xiao, Z., & Ling, L. (2014). Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosensors and Bioelectronics, 59, 54-57. doi:10.1016/j.bios.2014.03.009

Rai, V., Nyine, Y. T., Hapuarachchi, H. C., Yap, H. M., Ng, L. C., & Toh, C.-S. (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors and Bioelectronics, 32(1), 133-140. doi:10.1016/j.bios.2011.11.046

Li, J., Liu, Y., Zhu, X., Chang, G., He, H., Zhang, X., & Wang, S. (2017). A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG)n Trinucleotide Repeats. ACS Applied Materials & Interfaces, 9(50), 44231-44240. doi:10.1021/acsami.7b15014

Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370

Bayer, E. A., & Wilchek, M. (1990). [4] Biotin-binding proteins: Overview and prospects. Methods in Enzymology, 49-51. doi:10.1016/0076-6879(90)84258-i

González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4

Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022

Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025

Conteduca, D., Dell’Olio, F., Ciminelli, C., & Armenise, M. N. (2015). New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. Applied Optics, 54(9), 2208. doi:10.1364/ao.54.002208

Goyal, A. K., & Pal, S. (2015). Design and simulation of high sensitive photonic crystal waveguide sensor. Optik, 126(2), 240-243. doi:10.1016/j.ijleo.2014.08.174

Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145

Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146

Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d

Weinrich, D., Köhn, M., Jonkheijm, P., Westerlind, U., Dehmelt, L., Engelkamp, H., … Waldmann, H. (2009). Preparation of Biomolecule Microstructures and Microarrays by Thiol-ene Photoimmobilization. ChemBioChem, 11(2), 235-247. doi:10.1002/cbic.200900559

Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717

Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record