- -

Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Tórtola, Ángela es_ES
dc.contributor.author Prats-Quílez, Francisco es_ES
dc.contributor.author Gonzalez-Lucas, Daniel es_ES
dc.contributor.author Bañuls Polo, María-José es_ES
dc.contributor.author Maquieira Catala, Angel es_ES
dc.contributor.author Wheeler, Guy es_ES
dc.contributor.author Dalmay, Tamas es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Hurtado Montañés, Juan es_ES
dc.contributor.author Bohlmann, Helge es_ES
dc.contributor.author Götzen, Reiner es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-02-12T21:01:38Z
dc.date.available 2020-02-12T21:01:38Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1864-063X es_ES
dc.identifier.uri http://hdl.handle.net/10251/136756
dc.description.abstract [EN] An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probesupon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensorsis reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5 termination. Those MBs incorporate a biotin moiety close to their 3 termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained toward the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure. es_ES
dc.description.sponsorship Horizon 2020 Framework Programme, Grant/Award Number: ICT-644242; MINECO, Grant/Award Number: CTQ/2016/75749-R es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Biophotonics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Conformational change es_ES
dc.subject Molecular beacon es_ES
dc.subject Photonic bandgap es_ES
dc.subject Photonic biosensor es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbio.201800030 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/644242/EU/Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-75749-R/ES/BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, A.; Wheeler, G.; Dalmay, T.... (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics. 11(10). https://doi.org/10.1002/jbio.201800030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jbio.201800030 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\366788 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Patel, P. . (2002). (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC Trends in Analytical Chemistry, 21(2), 96-115. doi:10.1016/s0165-9936(01)00136-4 es_ES
dc.description.references Pérez-López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625-639. doi:10.1016/j.tifs.2011.04.001 es_ES
dc.description.references Zanchetta, G., Lanfranco, R., Giavazzi, F., Bellini, T., & Buscaglia, M. (2017). Emerging applications of label-free optical biosensors. Nanophotonics, 6(4), 627-645. doi:10.1515/nanoph-2016-0158 es_ES
dc.description.references Yáñez-Sedeño, P., Agüí, L., Villalonga, R., & Pingarrón, J. M. (2014). Biosensors in forensic analysis. A review. Analytica Chimica Acta, 823, 1-19. doi:10.1016/j.aca.2014.03.011 es_ES
dc.description.references Ricciardi, A., Crescitelli, A., Vaiano, P., Quero, G., Consales, M., Pisco, M., … Cusano, A. (2015). Lab-on-fiber technology: a new vision for chemical and biological sensing. The Analyst, 140(24), 8068-8079. doi:10.1039/c5an01241d es_ES
dc.description.references Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368 es_ES
dc.description.references Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728 es_ES
dc.description.references Bañuls, M.-J., González-Pedro, V., Barrios, C. A., Puchades, R., & Maquieira, Á. (2010). Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosensors and Bioelectronics, 25(6), 1460-1466. doi:10.1016/j.bios.2009.10.048 es_ES
dc.description.references Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA Biosensors and Microarrays. Chemical Reviews, 108(1), 109-139. doi:10.1021/cr0684467 es_ES
dc.description.references Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2012). Development of Oligonucleotide Microarrays onto Si-Based Surfaces via Thioether Linkage Mediated by UV Irradiation. Bioconjugate Chemistry, 23(10), 2121-2128. doi:10.1021/bc300333a es_ES
dc.description.references Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020q es_ES
dc.description.references Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303 es_ES
dc.description.references Dubertret, B., Calame, M., & Libchaber, A. J. (2001). Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology, 19(4), 365-370. doi:10.1038/86762 es_ES
dc.description.references Joshi, H. S., & Tor, Y. (2001). Metal-containing DNA hairpins as hybridization probes. Chemical Communications, (6), 549-550. doi:10.1039/b100036p es_ES
dc.description.references Heinlein, T., Knemeyer, J.-P., Piestert, O., & Sauer, M. (2003). Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. The Journal of Physical Chemistry B, 107(31), 7957-7964. doi:10.1021/jp0348068 es_ES
dc.description.references Williams, D. J., & Hall, K. B. (1996). Thermodynamic Comparison of the Salt Dependence of Natural RNA Hairpins and RNA Hairpins with Non-Nucleotide Spacers†. Biochemistry, 35(46), 14665-14670. doi:10.1021/bi961654g es_ES
dc.description.references Riccelli, P. V. (2001). Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic Acids Research, 29(4), 996-1004. doi:10.1093/nar/29.4.996 es_ES
dc.description.references Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797 es_ES
dc.description.references Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031 es_ES
dc.description.references Van Lierop, D., Faulds, K., & Graham, D. (2011). Separation Free DNA Detection Using Surface Enhanced Raman Scattering. Analytical Chemistry, 83(15), 5817-5821. doi:10.1021/ac200514e es_ES
dc.description.references Kotnala, A., & Gordon, R. (2014). Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. Biomedical Optics Express, 5(6), 1886. doi:10.1364/boe.5.001886 es_ES
dc.description.references Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007 es_ES
dc.description.references Miao, X., Guo, X., Xiao, Z., & Ling, L. (2014). Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosensors and Bioelectronics, 59, 54-57. doi:10.1016/j.bios.2014.03.009 es_ES
dc.description.references Rai, V., Nyine, Y. T., Hapuarachchi, H. C., Yap, H. M., Ng, L. C., & Toh, C.-S. (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors and Bioelectronics, 32(1), 133-140. doi:10.1016/j.bios.2011.11.046 es_ES
dc.description.references Li, J., Liu, Y., Zhu, X., Chang, G., He, H., Zhang, X., & Wang, S. (2017). A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG)n Trinucleotide Repeats. ACS Applied Materials & Interfaces, 9(50), 44231-44240. doi:10.1021/acsami.7b15014 es_ES
dc.description.references Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370 es_ES
dc.description.references Bayer, E. A., & Wilchek, M. (1990). [4] Biotin-binding proteins: Overview and prospects. Methods in Enzymology, 49-51. doi:10.1016/0076-6879(90)84258-i es_ES
dc.description.references González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 es_ES
dc.description.references Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Conteduca, D., Dell’Olio, F., Ciminelli, C., & Armenise, M. N. (2015). New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. Applied Optics, 54(9), 2208. doi:10.1364/ao.54.002208 es_ES
dc.description.references Goyal, A. K., & Pal, S. (2015). Design and simulation of high sensitive photonic crystal waveguide sensor. Optik, 126(2), 240-243. doi:10.1016/j.ijleo.2014.08.174 es_ES
dc.description.references Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 es_ES
dc.description.references Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 es_ES
dc.description.references Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d es_ES
dc.description.references Weinrich, D., Köhn, M., Jonkheijm, P., Westerlind, U., Dehmelt, L., Engelkamp, H., … Waldmann, H. (2009). Preparation of Biomolecule Microstructures and Microarrays by Thiol-ene Photoimmobilization. ChemBioChem, 11(2), 235-247. doi:10.1002/cbic.200900559 es_ES
dc.description.references Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 es_ES
dc.description.references Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem