Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz-Tórtola, Ángela | es_ES |
dc.contributor.author | Prats-Quílez, Francisco | es_ES |
dc.contributor.author | Gonzalez-Lucas, Daniel | es_ES |
dc.contributor.author | Bañuls Polo, María-José | es_ES |
dc.contributor.author | Maquieira Catala, Angel | es_ES |
dc.contributor.author | Wheeler, Guy | es_ES |
dc.contributor.author | Dalmay, Tamas | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Hurtado Montañés, Juan | es_ES |
dc.contributor.author | Bohlmann, Helge | es_ES |
dc.contributor.author | Götzen, Reiner | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2020-02-12T21:01:38Z | |
dc.date.available | 2020-02-12T21:01:38Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1864-063X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/136756 | |
dc.description.abstract | [EN] An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probesupon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensorsis reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5 termination. Those MBs incorporate a biotin moiety close to their 3 termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained toward the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure. | es_ES |
dc.description.sponsorship | Horizon 2020 Framework Programme, Grant/Award Number: ICT-644242; MINECO, Grant/Award Number: CTQ/2016/75749-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Biophotonics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Conformational change | es_ES |
dc.subject | Molecular beacon | es_ES |
dc.subject | Photonic bandgap | es_ES |
dc.subject | Photonic biosensor | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jbio.201800030 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/644242/EU/Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-75749-R/ES/BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, A.; Wheeler, G.; Dalmay, T.... (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics. 11(10). https://doi.org/10.1002/jbio.201800030 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jbio.201800030 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\366788 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Patel, P. . (2002). (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC Trends in Analytical Chemistry, 21(2), 96-115. doi:10.1016/s0165-9936(01)00136-4 | es_ES |
dc.description.references | Pérez-López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625-639. doi:10.1016/j.tifs.2011.04.001 | es_ES |
dc.description.references | Zanchetta, G., Lanfranco, R., Giavazzi, F., Bellini, T., & Buscaglia, M. (2017). Emerging applications of label-free optical biosensors. Nanophotonics, 6(4), 627-645. doi:10.1515/nanoph-2016-0158 | es_ES |
dc.description.references | Yáñez-Sedeño, P., Agüí, L., Villalonga, R., & Pingarrón, J. M. (2014). Biosensors in forensic analysis. A review. Analytica Chimica Acta, 823, 1-19. doi:10.1016/j.aca.2014.03.011 | es_ES |
dc.description.references | Ricciardi, A., Crescitelli, A., Vaiano, P., Quero, G., Consales, M., Pisco, M., … Cusano, A. (2015). Lab-on-fiber technology: a new vision for chemical and biological sensing. The Analyst, 140(24), 8068-8079. doi:10.1039/c5an01241d | es_ES |
dc.description.references | Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368 | es_ES |
dc.description.references | Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728 | es_ES |
dc.description.references | Bañuls, M.-J., González-Pedro, V., Barrios, C. A., Puchades, R., & Maquieira, Á. (2010). Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosensors and Bioelectronics, 25(6), 1460-1466. doi:10.1016/j.bios.2009.10.048 | es_ES |
dc.description.references | Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA Biosensors and Microarrays. Chemical Reviews, 108(1), 109-139. doi:10.1021/cr0684467 | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2012). Development of Oligonucleotide Microarrays onto Si-Based Surfaces via Thioether Linkage Mediated by UV Irradiation. Bioconjugate Chemistry, 23(10), 2121-2128. doi:10.1021/bc300333a | es_ES |
dc.description.references | Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020q | es_ES |
dc.description.references | Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303 | es_ES |
dc.description.references | Dubertret, B., Calame, M., & Libchaber, A. J. (2001). Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology, 19(4), 365-370. doi:10.1038/86762 | es_ES |
dc.description.references | Joshi, H. S., & Tor, Y. (2001). Metal-containing DNA hairpins as hybridization probes. Chemical Communications, (6), 549-550. doi:10.1039/b100036p | es_ES |
dc.description.references | Heinlein, T., Knemeyer, J.-P., Piestert, O., & Sauer, M. (2003). Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. The Journal of Physical Chemistry B, 107(31), 7957-7964. doi:10.1021/jp0348068 | es_ES |
dc.description.references | Williams, D. J., & Hall, K. B. (1996). Thermodynamic Comparison of the Salt Dependence of Natural RNA Hairpins and RNA Hairpins with Non-Nucleotide Spacers†. Biochemistry, 35(46), 14665-14670. doi:10.1021/bi961654g | es_ES |
dc.description.references | Riccelli, P. V. (2001). Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic Acids Research, 29(4), 996-1004. doi:10.1093/nar/29.4.996 | es_ES |
dc.description.references | Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797 | es_ES |
dc.description.references | Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031 | es_ES |
dc.description.references | Van Lierop, D., Faulds, K., & Graham, D. (2011). Separation Free DNA Detection Using Surface Enhanced Raman Scattering. Analytical Chemistry, 83(15), 5817-5821. doi:10.1021/ac200514e | es_ES |
dc.description.references | Kotnala, A., & Gordon, R. (2014). Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. Biomedical Optics Express, 5(6), 1886. doi:10.1364/boe.5.001886 | es_ES |
dc.description.references | Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007 | es_ES |
dc.description.references | Miao, X., Guo, X., Xiao, Z., & Ling, L. (2014). Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosensors and Bioelectronics, 59, 54-57. doi:10.1016/j.bios.2014.03.009 | es_ES |
dc.description.references | Rai, V., Nyine, Y. T., Hapuarachchi, H. C., Yap, H. M., Ng, L. C., & Toh, C.-S. (2012). Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors and Bioelectronics, 32(1), 133-140. doi:10.1016/j.bios.2011.11.046 | es_ES |
dc.description.references | Li, J., Liu, Y., Zhu, X., Chang, G., He, H., Zhang, X., & Wang, S. (2017). A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG)n Trinucleotide Repeats. ACS Applied Materials & Interfaces, 9(50), 44231-44240. doi:10.1021/acsami.7b15014 | es_ES |
dc.description.references | Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370 | es_ES |
dc.description.references | Bayer, E. A., & Wilchek, M. (1990). [4] Biotin-binding proteins: Overview and prospects. Methods in Enzymology, 49-51. doi:10.1016/0076-6879(90)84258-i | es_ES |
dc.description.references | González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 | es_ES |
dc.description.references | Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022 | es_ES |
dc.description.references | Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 | es_ES |
dc.description.references | Conteduca, D., Dell’Olio, F., Ciminelli, C., & Armenise, M. N. (2015). New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. Applied Optics, 54(9), 2208. doi:10.1364/ao.54.002208 | es_ES |
dc.description.references | Goyal, A. K., & Pal, S. (2015). Design and simulation of high sensitive photonic crystal waveguide sensor. Optik, 126(2), 240-243. doi:10.1016/j.ijleo.2014.08.174 | es_ES |
dc.description.references | Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 | es_ES |
dc.description.references | Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d | es_ES |
dc.description.references | Weinrich, D., Köhn, M., Jonkheijm, P., Westerlind, U., Dehmelt, L., Engelkamp, H., … Waldmann, H. (2009). Preparation of Biomolecule Microstructures and Microarrays by Thiol-ene Photoimmobilization. ChemBioChem, 11(2), 235-247. doi:10.1002/cbic.200900559 | es_ES |
dc.description.references | Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 | es_ES |
dc.description.references | Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 | es_ES |