- -

Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fenollar-Penadés, Alejandro es_ES
dc.contributor.author Doménech Antich, Eva Mª es_ES
dc.contributor.author Ferrús Pérez, Mª Antonia es_ES
dc.contributor.author Jiménez Belenguer, Ana Isabel es_ES
dc.date.accessioned 2020-02-14T21:02:35Z
dc.date.available 2020-02-14T21:02:35Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0362-028X es_ES
dc.identifier.uri http://hdl.handle.net/10251/136962
dc.description.abstract [EN] This study was conducted to assess the risk due to antimicrobial-resistant strains of Salmonella spp., Listeria monocytogenes, and Escherichia coli isolated from the eggshell and the contents of eggs bought in markets in Valencia (Spain). Thirty-four samples from three different production styles were analyzed: standard (n = 34), organic (n = 16), and backyard (n = 10) eggs. L. monocytogenes was not isolated in any style of production. Only one strain of Salmonella was isolated from standard production, which was resistant to ciprofloxacin and amoxicillin. E. coli strains were resistant in 22% of the isolates from organic production, 12.25% from standard production, and 11.23% from backyard production. In all cases, the highest resistance was observed for amoxicillin-clavulanate. None of the isolates from standard and backyard eggs were resistant to chloramphenicol, ciprofloxacin, gentamycin, and streptomycin, while only ceftriaxone was found to be effective against all E. coli isolates from organic eggs. beta-Lactamase genes bla(TEM), bla(SHV), and bla(CMY-2) and the resistance genes for tetracycline tetA, tetB, and tetC were tested. The most commonly detected antimicrobial resistance genes among the E. coli isolates were tetA (49.30%), bla(TEM) (47.89%), and tetB (36.62%). Overall, a maximum public health risk is associated with beta-lactam antibiotics. es_ES
dc.language Inglés es_ES
dc.publisher International Association for Food Protection es_ES
dc.relation.ispartof Journal of Food Protection es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antimicrobial resistance bacteria es_ES
dc.subject Antimicrobial resistance gene es_ES
dc.subject Egg es_ES
dc.subject Escherichia coli es_ES
dc.subject Food safety es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4315/0362-028X.JFP-18-355 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Fenollar-Penadés, A.; Doménech Antich, EM.; Ferrús Pérez, MA.; Jiménez Belenguer, AI. (2019). Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs. Journal of Food Protection. 82(3):422-428. https://doi.org/10.4315/0362-028X.JFP-18-355 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4315/0362-028X.JFP-18-355 es_ES
dc.description.upvformatpinicio 422 es_ES
dc.description.upvformatpfin 428 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 82 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\379773 es_ES
dc.description.references Clinical and Laboratory Standards Institute (CLSI). 2014. Performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement. CLSI Document M100-S24. CLSI, Wayne, PA. es_ES
dc.description.references (2013). The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA Journal, 11(5), 3196. doi:10.2903/j.efsa.2013.3196 es_ES
dc.description.references (2016). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2015. EFSA Journal, 14(12). doi:10.2903/j.efsa.2016.4634 es_ES
dc.description.references Evans, J. K., Buchanan, K. L., Griffith, S. C., Klasing, K. C., & Addison, B. (2017). Ecoimmunology and microbial ecology: Contributions to avian behavior, physiology, and life history. Hormones and Behavior, 88, 112-121. doi:10.1016/j.yhbeh.2016.12.003 es_ES
dc.description.references International Organization for Standardization. 2005. Microbiology of the food chain—horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. ISO 11290-1:1997/A1:2005. International Organization for Standardization, Geneva. es_ES
dc.description.references Lanz, R., Kuhnert, P., & Boerlin, P. (2003). Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veterinary Microbiology, 91(1), 73-84. doi:10.1016/s0378-1135(02)00263-8 es_ES
dc.description.references Rivoal, K., Fablet, A., Courtillon, C., Bougeard, S., Chemaly, M., & Protais, J. (2013). Detection of Listeria spp. in liquid egg products and in the egg breaking plants environment and tracking of Listeria monocytogenes by PFGE. International Journal of Food Microbiology, 166(1), 109-116. doi:10.1016/j.ijfoodmicro.2013.06.014 es_ES
dc.description.references Sáenz, Y., Zarazaga, M., Briñas, L., Lantero, M., Ruiz-Larrea, F., & Torres, C. (2001). Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. International Journal of Antimicrobial Agents, 18(4), 353-358. doi:10.1016/s0924-8579(01)00422-8 es_ES
dc.description.references Scientific Advisory Group on Antimi. (2009). Reflection paper on the use of third and fourth generation cephalosporins in food producing animals in the European Union: development of resistance and impact on human and animal health. Journal of Veterinary Pharmacology and Therapeutics, 32(6), 515-533. doi:10.1111/j.1365-2885.2009.01075.x es_ES
dc.description.references SHIVAPRASAD, H. L. (2000). Fowl typhoid and pullorum disease. Revue Scientifique et Technique de l’OIE, 19(2), 405-424. doi:10.20506/rst.19.2.1222 es_ES
dc.description.references Utrarachkij, F., Pornraungwong, S., Siripanichgon, K., Nakajima, C., Suzuki, Y., & Suthienkul, O. (2012). Possible horizontal transmission of Salmonella via reusable egg trays in Thailand. International Journal of Food Microbiology, 154(1-2), 73-78. doi:10.1016/j.ijfoodmicro.2011.12.024 es_ES
dc.description.references Voetsch, A. C., Van Gilder, T. J., Angulo, F. J., Farley, M. M., Shallow, S., … Marcus, R. (2004). FoodNet Estimate of the Burden of Illness Caused by NontyphoidalSalmonellaInfections in the United States. Clinical Infectious Diseases, 38(s3), S127-S134. doi:10.1086/381578 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem