- -

Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Signioficantly Enhanced Proton Conductivity under Low Humidity Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Signioficantly Enhanced Proton Conductivity under Low Humidity Conditions

Mostrar el registro completo del ítem

Escorihuela Fuentes, J.; Sahuquillo, O.; Garcia Bernabe, A.; Giménez Torres, E.; Compañ Moreno, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Signioficantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials. 8(10):1-13. https://doi.org/10.3390/nano8100775

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137582

Ficheros en el ítem

Metadatos del ítem

Título: Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Signioficantly Enhanced Proton Conductivity under Low Humidity Conditions
Autor: Escorihuela Fuentes, Jorge Sahuquillo, Oscar Garcia Bernabe, Abel Giménez Torres, Enrique Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The preparation and characterization of composite polybenzimidazole (PBI) membranes containing zeolitic imidazolate framework 8 (ZIF-8) and zeolitic imidazolate framework 67 (ZIF-67) is reported. The phosphoric acid ...[+]
Palabras clave: Proton exchange membrane , Polybenzimidazole , Zeolitic imidazoleate framework , Proton conductivity
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano8100775
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano8100775
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
This research was funded by the Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R.
Tipo: Artículo

References

Kreuer, K.-D., Paddison, S. J., Spohr, E., & Schuster, M. (2004). Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology. Chemical Reviews, 104(10), 4637-4678. doi:10.1021/cr020715f

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 [+]
Kreuer, K.-D., Paddison, S. J., Spohr, E., & Schuster, M. (2004). Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology. Chemical Reviews, 104(10), 4637-4678. doi:10.1021/cr020715f

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5

Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023

Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001

Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078

Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034

Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009

Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

Kongstein, O. E., Berning, T., Børresen, B., Seland, F., & Tunold, R. (2007). Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32(4), 418-422. doi:10.1016/j.energy.2006.07.009

A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403

Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b

Yang, S., Ahn, Y., & Kim, D. (2017). Poly(arylene ether ketone) proton exchange membranes grafted with long aliphatic pendant sulfonated groups for vanadium redox flow batteries. Journal of Materials Chemistry A, 5(5), 2261-2270. doi:10.1039/c6ta07456a

Zhang, N., Wang, B., Zhao, C., Wang, S., Zhang, Y., Bu, F., … Na, H. (2014). Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells. J. Mater. Chem. A, 2(34), 13996-14003. doi:10.1039/c4ta01931h

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109

Fei, F., Cseri, L., Szekely, G., & Blanford, C. F. (2018). Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 10(18), 16140-16147. doi:10.1021/acsami.8b03591

Shi, G. M., Yang, T., & Chung, T. S. (2012). Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586. doi:10.1016/j.memsci.2012.05.052

Didaskalou, C., Kupai, J., Cseri, L., Barabas, J., Vass, E., Holtzl, T., & Szekely, G. (2018). Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 8(8), 7430-7438. doi:10.1021/acscatal.8b01706

Seo, K., Seo, J., Nam, K.-H., & Han, H. (2015). Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 38(1), 87-95. doi:10.1002/pc.23563

Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., & Shimizu, G. K. H. (2009). Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chemistry, 1(9), 705-710. doi:10.1038/nchem.402

Phang, W. J., Jo, H., Lee, W. R., Song, J. H., Yoo, K., Kim, B., & Hong, C. S. (2015). Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angewandte Chemie International Edition, 54(17), 5142-5146. doi:10.1002/anie.201411703

Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H.-C. (2018). Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J. T., … Sen, U. (2017). From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 53(12), 2028-2031. doi:10.1039/c6cc08746a

Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v

Yang, L., Tang, B., & Wu, P. (2015). Metal–organic framework–graphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. Journal of Materials Chemistry A, 3(31), 15838-15842. doi:10.1039/c5ta03507d

Patel, H. A., Mansor, N., Gadipelli, S., Brett, D. J. L., & Guo, Z. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 8(45), 30687-30691. doi:10.1021/acsami.6b12240

Donnadio, A., Narducci, R., Casciola, M., Marmottini, F., D’Amato, R., Jazestani, M., … Costantino, F. (2017). Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 9(48), 42239-42246. doi:10.1021/acsami.7b14847

Rao, Z., Tang, B., & Wu, P. (2017). Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(27), 22597-22603. doi:10.1021/acsami.7b05969

Rao, Z., Feng, K., Tang, B., & Wu, P. (2017). Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 533, 160-170. doi:10.1016/j.memsci.2017.03.031

Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651

Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123

Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087

Sun, H., Tang, B., & Wu, P. (2017). Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Interfaces, 9(40), 35075-35085. doi:10.1021/acsami.7b13013

Cai, K., Sun, F., Liang, X., Liu, C., Zhao, N., Zou, X., & Zhu, G. (2017). An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 5(25), 12943-12950. doi:10.1039/c7ta00169j

Sen, U., Erkartal, M., Kung, C.-W., Ramani, V., Hupp, J. T., & Farha, O. K. (2016). Proton Conducting Self-Assembled Metal–Organic Framework/Polyelectrolyte Hollow Hybrid Nanostructures. ACS Applied Materials & Interfaces, 8(35), 23015-23021. doi:10.1021/acsami.6b05901

Erkartal, M., Usta, H., Citir, M., & Sen, U. (2016). Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. Journal of Membrane Science, 499, 156-163. doi:10.1016/j.memsci.2015.10.032

Dong, X.-Y., Li, J.-J., Han, Z., Duan, P.-G., Li, L.-K., & Zang, S.-Q. (2017). Tuning the functional substituent group and guest of metal–organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. Journal of Materials Chemistry A, 5(7), 3464-3474. doi:10.1039/c6ta07761g

Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., … Zhu, G. (2013). From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci., 4(3), 983-992. doi:10.1039/c2sc21927a

Wu, B., Lin, X., Ge, L., Wu, L., & Xu, T. (2013). A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun., 49(2), 143-145. doi:10.1039/c2cc37045j

Guo, Y., Tang, J., Qian, H., Wang, Z., & Yamauchi, Y. (2017). One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co3S4@MoS2 Heterostructures as Efficient Bifunctional Catalysts. Chemistry of Materials, 29(13), 5566-5573. doi:10.1021/acs.chemmater.7b00867

Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220-223. doi:10.1016/j.matlet.2012.05.077

Xu, H., Chen, K., Guo, X., Fang, J., & Yin, J. (2007). Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 48(19), 5556-5564. doi:10.1016/j.polymer.2007.07.029

Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725

Ergun, D., Devrim, Y., Bac, N., & Eroglu, I. (2012). Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 124(S1), E267-E277. doi:10.1002/app.36507

Maity, S., Singha, S., & Jana, T. (2015). Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer, 66, 76-85. doi:10.1016/j.polymer.2015.03.040

Devrim, Y., Devrim, H., & Eroglu, I. (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(23), 10044-10052. doi:10.1016/j.ijhydene.2016.02.043

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Barbosa, P., Rosero-Navarro, N. C., Shi, F.-N., & Figueiredo, F. M. L. (2015). Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 153, 19-27. doi:10.1016/j.electacta.2014.11.093

Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095

Lin, B., Chu, F., Yuan, N., Shang, H., Ren, Y., Gu, Z., … Yu, X. (2014). Phosphoric acid doped polybenzimidazole/imidazolium-modified silsesquioxane hybrid proton conducting membranes for anhydrous proton exchange membrane application. Journal of Power Sources, 252, 270-276. doi:10.1016/j.jpowsour.2013.11.102

Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w

Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem