- -

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

Mostrar el registro completo del ítem

Barjola-Ruiz, A.; Escorihuela Fuentes, J.; Andrio Balado, A.; Giménez Torres, E.; Compañ Moreno, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials. 8(12). https://doi.org/10.3390/nano8121042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137584

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)
Autor: Barjola-Ruiz, Arturo Escorihuela Fuentes, Jorge Andrio Balado, Andreu Giménez Torres, Enrique Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. ...[+]
Palabras clave: Proton exchange membrane , Sulfonated poly(ether ether ketone) , Zeolitic imidazoleate framework , Proton conduction
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano8121042
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano8121042
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
This work was funded by The Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R.
Tipo: Artículo

References

Veziroglu, A., & Macario, R. (2011). Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy, 36(1), 25-43. doi:10.1016/j.ijhydene.2010.08.145

Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources, 157(1), 411-421. doi:10.1016/j.jpowsour.2005.07.044

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k [+]
Veziroglu, A., & Macario, R. (2011). Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy, 36(1), 25-43. doi:10.1016/j.ijhydene.2010.08.145

Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources, 157(1), 411-421. doi:10.1016/j.jpowsour.2005.07.044

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030

Álvarez, G., Alcaide, F., Cabot, P. L., Lázaro, M. J., Pastor, E., & Solla-Gullón, J. (2012). Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. International Journal of Hydrogen Energy, 37(1), 393-404. doi:10.1016/j.ijhydene.2011.09.055

Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519

Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078

Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687

Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023

Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001

Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society, 150(12), A1599. doi:10.1149/1.1619984

Sun, B., Song, H., Qiu, X., & Zhu, W. (2011). New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells. ChemPhysChem, 12(6), 1196-1201. doi:10.1002/cphc.201000848

Zaidi, S. M. ., Mikhailenko, S. ., Robertson, G. ., Guiver, M. ., & Kaliaguine, S. (2000). Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 173(1), 17-34. doi:10.1016/s0376-7388(00)00345-8

Iulianelli, A., & Basile, A. (2012). Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. International Journal of Hydrogen Energy, 37(20), 15241-15255. doi:10.1016/j.ijhydene.2012.07.063

Nag, S., Castro, M., Choudhary, V., & Feller, J.-F. (2017). Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. Journal of Materials Chemistry B, 5(2), 348-359. doi:10.1039/c6tb02583h

Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044

Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Zhang, Z., Han, S., Wang, C., Li, J., & Xu, G. (2015). Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials, 5(4), 1732-1755. doi:10.3390/nano5041732

Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E., & Guo, Z. (2015). Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 5(2), 755-777. doi:10.3390/nano5020755

Du, L., Yan, X., He, G., Wu, X., Hu, Z., & Wang, Y. (2012). SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles. International Journal of Hydrogen Energy, 37(16), 11853-11861. doi:10.1016/j.ijhydene.2012.05.024

Narayanaswamy Venkatesan, P., & Dharmalingam, S. (2015). Effect of zeolite on SPEEK /zeolite hybrid membrane as electrolyte for microbial fuel cell applications. RSC Advances, 5(102), 84004-84013. doi:10.1039/c5ra14701h

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Phang, W. J., Jo, H., Lee, W. R., Song, J. H., Yoo, K., Kim, B., & Hong, C. S. (2015). Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angewandte Chemie International Edition, 54(17), 5142-5146. doi:10.1002/anie.201411703

Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399

Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g

Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J., & Li, J.-R. (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy & Environment, 3(3), 191-228. doi:10.1016/j.gee.2018.03.001

Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272

Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c

Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t

Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010b

Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v

Wang, L., Zheng, M., & Xie, Z. (2018). Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 6(5), 707-717. doi:10.1039/c7tb02970e

Xu, M., Yuan, S., Chen, X.-Y., Chang, Y.-J., Day, G., Gu, Z.-Y., & Zhou, H.-C. (2017). Two-Dimensional Metal–Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity. Journal of the American Chemical Society, 139(24), 8312-8319. doi:10.1021/jacs.7b03450

Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651

Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123

Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58-67. doi:10.1021/ar900116g

Sun, H., Tang, B., & Wu, P. (2017). Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Interfaces, 9(40), 35075-35085. doi:10.1021/acsami.7b13013

McCarthy, M. C., Varela-Guerrero, V., Barnett, G. V., & Jeong, H.-K. (2010). Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 26(18), 14636-14641. doi:10.1021/la102409e

Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220-223. doi:10.1016/j.matlet.2012.05.077

Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334

Panchariya, D. K., Rai, R. K., Anil Kumar, E., & Singh, S. K. (2018). Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega, 3(1), 167-175. doi:10.1021/acsomega.7b01693

(2017). Transport in Proton Exchange Membranes for Fuel Cell Applications—A Systematic Non-Equilibrium Approach. Materials, 10(6), 576. doi:10.3390/ma10060576

Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775

Wu, H., Shen, X., Cao, Y., Li, Z., & Jiang, Z. (2014). Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs. Journal of Membrane Science, 451, 74-84. doi:10.1016/j.memsci.2013.09.058

Nie, L., Wang, J., Xu, T., Dong, H., Wu, H., & Jiang, Z. (2012). Enhancing proton conduction under low humidity by incorporating core–shell polymeric phosphonic acid submicrospheres into sulfonated poly(ether ether ketone) membrane. Journal of Power Sources, 213, 1-9. doi:10.1016/j.jpowsour.2012.03.108

Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299

Lee, C. H., Park, H. B., Lee, Y. M., & Lee, R. D. (2005). Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research, 44(20), 7617-7626. doi:10.1021/ie0501172

Lânyi, Š. (1975). Polarization in ionic crystals with incompletely blocking electrodes. Journal of Physics and Chemistry of Solids, 36(7-8), 775-781. doi:10.1016/0022-3697(75)90101-8

Ogihara, N., Itou, Y., Sasaki, T., & Takeuchi, Y. (2015). Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C, 119(9), 4612-4619. doi:10.1021/jp512564f

Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095

Zhang, J., Bai, H.-J., Ren, Q., Luo, H.-B., Ren, X.-M., Tian, Z.-F., & Lu, S. (2018). Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane. ACS Applied Materials & Interfaces, 10(34), 28656-28663. doi:10.1021/acsami.8b09070

Zheng, Y., Zheng, S., Xue, H., & Pang, H. (2018). Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Advanced Functional Materials, 28(47), 1804950. doi:10.1002/adfm.201804950

Lux, F. (1993). Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285-301. doi:10.1007/bf00357799

Nan, C.-W., & Smith, D. M. (1991). A.c. electrical properties of composite solid electrolytes. Materials Science and Engineering: B, 10(2), 99-106. doi:10.1016/0921-5107(91)90115-c

Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1

Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009

García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018

Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906

Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j

Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem