Mostrar el registro sencillo del ítem
dc.contributor.author | Barjola-Ruiz, Arturo | es_ES |
dc.contributor.author | Escorihuela Fuentes, Jorge | es_ES |
dc.contributor.author | Andrio Balado, Andreu | es_ES |
dc.contributor.author | Giménez Torres, Enrique | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.date.accessioned | 2020-02-21T21:01:38Z | |
dc.date.available | 2020-02-21T21:01:38Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137584 | |
dc.description.abstract | [EN] The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite membranes than for SPEEK, and that of the SPEEK/ZMix membrane was higher than those for SPEEK/Z8 and SPEEK/Z67, respectively. This behavior turns out to be more evident as the temperature increases: the conductivity of the SPEEK/ZMix was 8.5 x 10(-3) S.cm(-1), while for the SPEEK/Z8 and SPEEK/Z67 membranes, the values were 2.5 x 10(-3) S.cm(-1) and 1.6 x 10(-3) S.cm(-1), respectively, at 120 degrees C. Similarly, the real and imaginary parts of the complex dielectric constant were obtained, and an analysis of tan delta was carried out for all of the membranes under study. Using this value, the diffusion coefficient and the charge carrier density were obtained using the analysis of electrode polarization (EP). | es_ES |
dc.description.sponsorship | This work was funded by The Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Proton exchange membrane | es_ES |
dc.subject | Sulfonated poly(ether ether ketone) | es_ES |
dc.subject | Zeolitic imidazoleate framework | es_ES |
dc.subject | Proton conduction | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano8121042 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Barjola-Ruiz, A.; Escorihuela Fuentes, J.; Andrio Balado, A.; Giménez Torres, E.; Compañ Moreno, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials. 8(12). https://doi.org/10.3390/nano8121042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano8121042 | es_ES |
dc.description.upvformatpinicio | 1042 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.relation.pasarela | S\377947 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Veziroglu, A., & Macario, R. (2011). Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy, 36(1), 25-43. doi:10.1016/j.ijhydene.2010.08.145 | es_ES |
dc.description.references | Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources, 157(1), 411-421. doi:10.1016/j.jpowsour.2005.07.044 | es_ES |
dc.description.references | Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k | es_ES |
dc.description.references | Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 | es_ES |
dc.description.references | Álvarez, G., Alcaide, F., Cabot, P. L., Lázaro, M. J., Pastor, E., & Solla-Gullón, J. (2012). Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. International Journal of Hydrogen Energy, 37(1), 393-404. doi:10.1016/j.ijhydene.2011.09.055 | es_ES |
dc.description.references | Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 | es_ES |
dc.description.references | Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078 | es_ES |
dc.description.references | Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687 | es_ES |
dc.description.references | Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 | es_ES |
dc.description.references | Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 | es_ES |
dc.description.references | Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023 | es_ES |
dc.description.references | Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 | es_ES |
dc.description.references | Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society, 150(12), A1599. doi:10.1149/1.1619984 | es_ES |
dc.description.references | Sun, B., Song, H., Qiu, X., & Zhu, W. (2011). New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells. ChemPhysChem, 12(6), 1196-1201. doi:10.1002/cphc.201000848 | es_ES |
dc.description.references | Zaidi, S. M. ., Mikhailenko, S. ., Robertson, G. ., Guiver, M. ., & Kaliaguine, S. (2000). Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 173(1), 17-34. doi:10.1016/s0376-7388(00)00345-8 | es_ES |
dc.description.references | Iulianelli, A., & Basile, A. (2012). Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. International Journal of Hydrogen Energy, 37(20), 15241-15255. doi:10.1016/j.ijhydene.2012.07.063 | es_ES |
dc.description.references | Nag, S., Castro, M., Choudhary, V., & Feller, J.-F. (2017). Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. Journal of Materials Chemistry B, 5(2), 348-359. doi:10.1039/c6tb02583h | es_ES |
dc.description.references | Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044 | es_ES |
dc.description.references | Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102 | es_ES |
dc.description.references | Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 | es_ES |
dc.description.references | Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g | es_ES |
dc.description.references | Zhang, Z., Han, S., Wang, C., Li, J., & Xu, G. (2015). Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials, 5(4), 1732-1755. doi:10.3390/nano5041732 | es_ES |
dc.description.references | Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E., & Guo, Z. (2015). Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 5(2), 755-777. doi:10.3390/nano5020755 | es_ES |
dc.description.references | Du, L., Yan, X., He, G., Wu, X., Hu, Z., & Wang, Y. (2012). SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles. International Journal of Hydrogen Energy, 37(16), 11853-11861. doi:10.1016/j.ijhydene.2012.05.024 | es_ES |
dc.description.references | Narayanaswamy Venkatesan, P., & Dharmalingam, S. (2015). Effect of zeolite on SPEEK /zeolite hybrid membrane as electrolyte for microbial fuel cell applications. RSC Advances, 5(102), 84004-84013. doi:10.1039/c5ra14701h | es_ES |
dc.description.references | Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f | es_ES |
dc.description.references | Phang, W. J., Jo, H., Lee, W. R., Song, J. H., Yoo, K., Kim, B., & Hong, C. S. (2015). Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angewandte Chemie International Edition, 54(17), 5142-5146. doi:10.1002/anie.201411703 | es_ES |
dc.description.references | Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399 | es_ES |
dc.description.references | Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146 | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444 | es_ES |
dc.description.references | James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g | es_ES |
dc.description.references | Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J., & Li, J.-R. (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy & Environment, 3(3), 191-228. doi:10.1016/j.gee.2018.03.001 | es_ES |
dc.description.references | Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272 | es_ES |
dc.description.references | Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147 | es_ES |
dc.description.references | Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c | es_ES |
dc.description.references | Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t | es_ES |
dc.description.references | Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010b | es_ES |
dc.description.references | Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v | es_ES |
dc.description.references | Wang, L., Zheng, M., & Xie, Z. (2018). Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 6(5), 707-717. doi:10.1039/c7tb02970e | es_ES |
dc.description.references | Xu, M., Yuan, S., Chen, X.-Y., Chang, Y.-J., Day, G., Gu, Z.-Y., & Zhou, H.-C. (2017). Two-Dimensional Metal–Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity. Journal of the American Chemical Society, 139(24), 8312-8319. doi:10.1021/jacs.7b03450 | es_ES |
dc.description.references | Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651 | es_ES |
dc.description.references | Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123 | es_ES |
dc.description.references | Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087 | es_ES |
dc.description.references | Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103 | es_ES |
dc.description.references | Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58-67. doi:10.1021/ar900116g | es_ES |
dc.description.references | Sun, H., Tang, B., & Wu, P. (2017). Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Interfaces, 9(40), 35075-35085. doi:10.1021/acsami.7b13013 | es_ES |
dc.description.references | McCarthy, M. C., Varela-Guerrero, V., Barnett, G. V., & Jeong, H.-K. (2010). Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 26(18), 14636-14641. doi:10.1021/la102409e | es_ES |
dc.description.references | Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220-223. doi:10.1016/j.matlet.2012.05.077 | es_ES |
dc.description.references | Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334 | es_ES |
dc.description.references | Panchariya, D. K., Rai, R. K., Anil Kumar, E., & Singh, S. K. (2018). Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega, 3(1), 167-175. doi:10.1021/acsomega.7b01693 | es_ES |
dc.description.references | (2017). Transport in Proton Exchange Membranes for Fuel Cell Applications—A Systematic Non-Equilibrium Approach. Materials, 10(6), 576. doi:10.3390/ma10060576 | es_ES |
dc.description.references | Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 | es_ES |
dc.description.references | Wu, H., Shen, X., Cao, Y., Li, Z., & Jiang, Z. (2014). Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs. Journal of Membrane Science, 451, 74-84. doi:10.1016/j.memsci.2013.09.058 | es_ES |
dc.description.references | Nie, L., Wang, J., Xu, T., Dong, H., Wu, H., & Jiang, Z. (2012). Enhancing proton conduction under low humidity by incorporating core–shell polymeric phosphonic acid submicrospheres into sulfonated poly(ether ether ketone) membrane. Journal of Power Sources, 213, 1-9. doi:10.1016/j.jpowsour.2012.03.108 | es_ES |
dc.description.references | Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299 | es_ES |
dc.description.references | Lee, C. H., Park, H. B., Lee, Y. M., & Lee, R. D. (2005). Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research, 44(20), 7617-7626. doi:10.1021/ie0501172 | es_ES |
dc.description.references | Lânyi, Š. (1975). Polarization in ionic crystals with incompletely blocking electrodes. Journal of Physics and Chemistry of Solids, 36(7-8), 775-781. doi:10.1016/0022-3697(75)90101-8 | es_ES |
dc.description.references | Ogihara, N., Itou, Y., Sasaki, T., & Takeuchi, Y. (2015). Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C, 119(9), 4612-4619. doi:10.1021/jp512564f | es_ES |
dc.description.references | Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 | es_ES |
dc.description.references | Zhang, J., Bai, H.-J., Ren, Q., Luo, H.-B., Ren, X.-M., Tian, Z.-F., & Lu, S. (2018). Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane. ACS Applied Materials & Interfaces, 10(34), 28656-28663. doi:10.1021/acsami.8b09070 | es_ES |
dc.description.references | Zheng, Y., Zheng, S., Xue, H., & Pang, H. (2018). Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Advanced Functional Materials, 28(47), 1804950. doi:10.1002/adfm.201804950 | es_ES |
dc.description.references | Lux, F. (1993). Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285-301. doi:10.1007/bf00357799 | es_ES |
dc.description.references | Nan, C.-W., & Smith, D. M. (1991). A.c. electrical properties of composite solid electrolytes. Materials Science and Engineering: B, 10(2), 99-106. doi:10.1016/0921-5107(91)90115-c | es_ES |
dc.description.references | Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 | es_ES |
dc.description.references | Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 | es_ES |
dc.description.references | Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 | es_ES |
dc.description.references | Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 | es_ES |
dc.description.references | Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 | es_ES |
dc.description.references | Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 | es_ES |
dc.description.references | Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 | es_ES |
dc.description.references | Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 | es_ES |
dc.description.references | Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 | es_ES |
dc.description.references | Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009 | es_ES |
dc.description.references | García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 | es_ES |
dc.description.references | Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906 | es_ES |
dc.description.references | Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j | es_ES |
dc.description.references | Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u | es_ES |