- -

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barjola-Ruiz, Arturo es_ES
dc.contributor.author Escorihuela Fuentes, Jorge es_ES
dc.contributor.author Andrio Balado, Andreu es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2020-02-21T21:01:38Z
dc.date.available 2020-02-21T21:01:38Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137584
dc.description.abstract [EN] The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite membranes than for SPEEK, and that of the SPEEK/ZMix membrane was higher than those for SPEEK/Z8 and SPEEK/Z67, respectively. This behavior turns out to be more evident as the temperature increases: the conductivity of the SPEEK/ZMix was 8.5 x 10(-3) S.cm(-1), while for the SPEEK/Z8 and SPEEK/Z67 membranes, the values were 2.5 x 10(-3) S.cm(-1) and 1.6 x 10(-3) S.cm(-1), respectively, at 120 degrees C. Similarly, the real and imaginary parts of the complex dielectric constant were obtained, and an analysis of tan delta was carried out for all of the membranes under study. Using this value, the diffusion coefficient and the charge carrier density were obtained using the analysis of electrode polarization (EP). es_ES
dc.description.sponsorship This work was funded by The Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Proton exchange membrane es_ES
dc.subject Sulfonated poly(ether ether ketone) es_ES
dc.subject Zeolitic imidazoleate framework es_ES
dc.subject Proton conduction es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano8121042 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Barjola-Ruiz, A.; Escorihuela Fuentes, J.; Andrio Balado, A.; Giménez Torres, E.; Compañ Moreno, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials. 8(12). https://doi.org/10.3390/nano8121042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano8121042 es_ES
dc.description.upvformatpinicio 1042 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.relation.pasarela S\377947 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Veziroglu, A., & Macario, R. (2011). Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy, 36(1), 25-43. doi:10.1016/j.ijhydene.2010.08.145 es_ES
dc.description.references Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles. Journal of Power Sources, 157(1), 411-421. doi:10.1016/j.jpowsour.2005.07.044 es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 es_ES
dc.description.references Álvarez, G., Alcaide, F., Cabot, P. L., Lázaro, M. J., Pastor, E., & Solla-Gullón, J. (2012). Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. International Journal of Hydrogen Energy, 37(1), 393-404. doi:10.1016/j.ijhydene.2011.09.055 es_ES
dc.description.references Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 es_ES
dc.description.references Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078 es_ES
dc.description.references Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687 es_ES
dc.description.references Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023 es_ES
dc.description.references Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 es_ES
dc.description.references Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society, 150(12), A1599. doi:10.1149/1.1619984 es_ES
dc.description.references Sun, B., Song, H., Qiu, X., & Zhu, W. (2011). New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells. ChemPhysChem, 12(6), 1196-1201. doi:10.1002/cphc.201000848 es_ES
dc.description.references Zaidi, S. M. ., Mikhailenko, S. ., Robertson, G. ., Guiver, M. ., & Kaliaguine, S. (2000). Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 173(1), 17-34. doi:10.1016/s0376-7388(00)00345-8 es_ES
dc.description.references Iulianelli, A., & Basile, A. (2012). Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. International Journal of Hydrogen Energy, 37(20), 15241-15255. doi:10.1016/j.ijhydene.2012.07.063 es_ES
dc.description.references Nag, S., Castro, M., Choudhary, V., & Feller, J.-F. (2017). Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. Journal of Materials Chemistry B, 5(2), 348-359. doi:10.1039/c6tb02583h es_ES
dc.description.references Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044 es_ES
dc.description.references Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102 es_ES
dc.description.references Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 es_ES
dc.description.references Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g es_ES
dc.description.references Zhang, Z., Han, S., Wang, C., Li, J., & Xu, G. (2015). Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials, 5(4), 1732-1755. doi:10.3390/nano5041732 es_ES
dc.description.references Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E., & Guo, Z. (2015). Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 5(2), 755-777. doi:10.3390/nano5020755 es_ES
dc.description.references Du, L., Yan, X., He, G., Wu, X., Hu, Z., & Wang, Y. (2012). SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles. International Journal of Hydrogen Energy, 37(16), 11853-11861. doi:10.1016/j.ijhydene.2012.05.024 es_ES
dc.description.references Narayanaswamy Venkatesan, P., & Dharmalingam, S. (2015). Effect of zeolite on SPEEK /zeolite hybrid membrane as electrolyte for microbial fuel cell applications. RSC Advances, 5(102), 84004-84013. doi:10.1039/c5ra14701h es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Phang, W. J., Jo, H., Lee, W. R., Song, J. H., Yoo, K., Kim, B., & Hong, C. S. (2015). Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation. Angewandte Chemie International Edition, 54(17), 5142-5146. doi:10.1002/anie.201411703 es_ES
dc.description.references Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399 es_ES
dc.description.references Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146 es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444 es_ES
dc.description.references James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g es_ES
dc.description.references Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J., & Li, J.-R. (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy & Environment, 3(3), 191-228. doi:10.1016/j.gee.2018.03.001 es_ES
dc.description.references Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272 es_ES
dc.description.references Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147 es_ES
dc.description.references Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c es_ES
dc.description.references Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t es_ES
dc.description.references Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010b es_ES
dc.description.references Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v es_ES
dc.description.references Wang, L., Zheng, M., & Xie, Z. (2018). Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 6(5), 707-717. doi:10.1039/c7tb02970e es_ES
dc.description.references Xu, M., Yuan, S., Chen, X.-Y., Chang, Y.-J., Day, G., Gu, Z.-Y., & Zhou, H.-C. (2017). Two-Dimensional Metal–Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity. Journal of the American Chemical Society, 139(24), 8312-8319. doi:10.1021/jacs.7b03450 es_ES
dc.description.references Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651 es_ES
dc.description.references Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123 es_ES
dc.description.references Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087 es_ES
dc.description.references Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103 es_ES
dc.description.references Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58-67. doi:10.1021/ar900116g es_ES
dc.description.references Sun, H., Tang, B., & Wu, P. (2017). Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Interfaces, 9(40), 35075-35085. doi:10.1021/acsami.7b13013 es_ES
dc.description.references McCarthy, M. C., Varela-Guerrero, V., Barnett, G. V., & Jeong, H.-K. (2010). Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 26(18), 14636-14641. doi:10.1021/la102409e es_ES
dc.description.references Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220-223. doi:10.1016/j.matlet.2012.05.077 es_ES
dc.description.references Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334 es_ES
dc.description.references Panchariya, D. K., Rai, R. K., Anil Kumar, E., & Singh, S. K. (2018). Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega, 3(1), 167-175. doi:10.1021/acsomega.7b01693 es_ES
dc.description.references (2017). Transport in Proton Exchange Membranes for Fuel Cell Applications—A Systematic Non-Equilibrium Approach. Materials, 10(6), 576. doi:10.3390/ma10060576 es_ES
dc.description.references Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 es_ES
dc.description.references Wu, H., Shen, X., Cao, Y., Li, Z., & Jiang, Z. (2014). Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs. Journal of Membrane Science, 451, 74-84. doi:10.1016/j.memsci.2013.09.058 es_ES
dc.description.references Nie, L., Wang, J., Xu, T., Dong, H., Wu, H., & Jiang, Z. (2012). Enhancing proton conduction under low humidity by incorporating core–shell polymeric phosphonic acid submicrospheres into sulfonated poly(ether ether ketone) membrane. Journal of Power Sources, 213, 1-9. doi:10.1016/j.jpowsour.2012.03.108 es_ES
dc.description.references Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299 es_ES
dc.description.references Lee, C. H., Park, H. B., Lee, Y. M., & Lee, R. D. (2005). Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research, 44(20), 7617-7626. doi:10.1021/ie0501172 es_ES
dc.description.references Lânyi, Š. (1975). Polarization in ionic crystals with incompletely blocking electrodes. Journal of Physics and Chemistry of Solids, 36(7-8), 775-781. doi:10.1016/0022-3697(75)90101-8 es_ES
dc.description.references Ogihara, N., Itou, Y., Sasaki, T., & Takeuchi, Y. (2015). Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C, 119(9), 4612-4619. doi:10.1021/jp512564f es_ES
dc.description.references Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 es_ES
dc.description.references Zhang, J., Bai, H.-J., Ren, Q., Luo, H.-B., Ren, X.-M., Tian, Z.-F., & Lu, S. (2018). Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane. ACS Applied Materials & Interfaces, 10(34), 28656-28663. doi:10.1021/acsami.8b09070 es_ES
dc.description.references Zheng, Y., Zheng, S., Xue, H., & Pang, H. (2018). Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Advanced Functional Materials, 28(47), 1804950. doi:10.1002/adfm.201804950 es_ES
dc.description.references Lux, F. (1993). Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285-301. doi:10.1007/bf00357799 es_ES
dc.description.references Nan, C.-W., & Smith, D. M. (1991). A.c. electrical properties of composite solid electrolytes. Materials Science and Engineering: B, 10(2), 99-106. doi:10.1016/0921-5107(91)90115-c es_ES
dc.description.references Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 es_ES
dc.description.references Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009 es_ES
dc.description.references García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 es_ES
dc.description.references Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906 es_ES
dc.description.references Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j es_ES
dc.description.references Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem