- -

Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil-Castell, O. es_ES
dc.contributor.author Galindo-Alfaro, Diana es_ES
dc.contributor.author Sanchez-Ballester, S. es_ES
dc.contributor.author TERUEL JUANES, ROBERTO es_ES
dc.contributor.author David Badia, José es_ES
dc.contributor.author Ribes-Greus, A. es_ES
dc.date.accessioned 2020-02-21T21:01:44Z
dc.date.available 2020-02-21T21:01:44Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137586
dc.description.abstract [EN] Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the sulfonation and the addition of nanoparticles such as graphene oxide (GO) were considered to bring new features to PVA. Two series of sulfonated and nonsulfonated composite nanofibers, with different compositions of GO, were prepared by electrospinning. The use of sulfosuccinic acid (SSA) allowed crosslinked and functionalized mats with controlled size and morphology to be obtained. The functionalization of the main chain of the PVA and the determination of the optimum composition of GO were analyzed in terms of the nanofibrous morphology, the chemical structure, the thermal properties, and conductivity. The crosslinking and the sulfonation treatment decreased the average fiber diameter of the nanofibers, which were electrical insulators regardless of the composition. The addition of small amounts of GO contributed to the retention of humidity, which significantly increased the proton conductivity. Although the single sulfonation of the polymer matrix produced a decrease in the proton conductivity, the combination of the sulfonation, the crosslinking, and the addition of GO enhanced the proton conductivity. The proposed nanofibers can be considered as good candidates for being exploited as valuable components for ionic polyelectrolyte membranes. es_ES
dc.description.sponsorship This research was funded by the MINISTERIO DE ECONOMIA, INDUSTRIA Y COMPETITIVIDAD, grant number ENE2017-86711-C3-1-R and by the MINISTERIO DE EDUCACION, CULTURA Y DEPORTE, grant number FPU13/01916. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(vinyl alcohol) (PVA) es_ES
dc.subject Graphene oxide (GO) es_ES
dc.subject Crosslinked,nanofibers es_ES
dc.subject Polyelectrolyte es_ES
dc.subject Proton conductivity es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9030397 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F01916/ES/FPU13%2F01916/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-86711-C3-1-R/ES/SISTEMA INTEGRADO DE DESCARBONIZACION Y PRODUCCION DE ENERGIA BASADO EN PILAS DE COMBUSTIBLE DE METANOL DIRECTO PARA APLICACIONES NAVALES Y AEROESPACIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Gil-Castell, O.; Galindo-Alfaro, D.; Sanchez-Ballester, S.; Teruel Juanes, R.; David Badia, J.; Ribes-Greus, A. (2019). Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes. Nanomaterials. 9(3):1-20. https://doi.org/10.3390/nano9030397 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9030397 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.relation.pasarela S\387559 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Shabani, I., Hasani-Sadrabadi, M. M., Haddadi-Asl, V., & Soleimani, M. (2011). Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 368(1-2), 233-240. doi:10.1016/j.memsci.2010.11.048 es_ES
dc.description.references Sood, R., Cavaliere, S., Jones, D. J., & Rozière, J. (2016). Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy, 26, 729-745. doi:10.1016/j.nanoen.2016.06.027 es_ES
dc.description.references Rajesh, S., Zhao, Y., Fong, H., & Menkhaus, T. J. (2016). Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale, 8(43), 18376-18389. doi:10.1039/c6nr06295d es_ES
dc.description.references Junoh, H., Jaafar, J., Mohd Norddin, M. N. A., Ismail, A. F., Othman, M. H. D., Rahman, M. A., … Ilbeygi, H. (2015). A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell. Journal of Nanomaterials, 2015, 1-16. doi:10.1155/2015/690965 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Strömberg, E., Karlsson, S., & Ribes-Greus, A. (2017). Effect of the dissolution time into an acid hydrolytic solvent to tailor electrospun nanofibrous polycaprolactone scaffolds. European Polymer Journal, 87, 174-187. doi:10.1016/j.eurpolymj.2016.12.005 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., & Ribes-Greus, A. (2018). Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. European Polymer Journal, 101, 273-281. doi:10.1016/j.eurpolymj.2018.02.030 es_ES
dc.description.references Tanaka, M. (2015). Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polymer Journal, 48(1), 51-58. doi:10.1038/pj.2015.76 es_ES
dc.description.references Li, H.-Y., & Liu, Y.-L. (2014). Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J. Mater. Chem. A, 2(11), 3783-3793. doi:10.1039/c3ta14264g es_ES
dc.description.references Pedroza, O. J. O., Dutra Filho, J. C., Picciani, P. H. S., & Dias, M. L. (2014). Morphology and proton conductivity of composite membranes based on poly(styrene sulfonic acid–maleic anhydride) nanofibers prepared by electrospinning. Ionics, 21(3), 755-764. doi:10.1007/s11581-014-1212-2 es_ES
dc.description.references Choi, J., Lee, K. M., Wycisk, R., Pintauro, P. N., & Mather, P. T. (2010). Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells. Journal of The Electrochemical Society, 157(6), B914. doi:10.1149/1.3392294 es_ES
dc.description.references Reyes-Rodriguez, J. L., Solorza-Feria, O., García-Bernabé, A., Giménez, E., Sahuquillo, O., & Compañ, V. (2016). Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Advances, 6(62), 56986-56999. doi:10.1039/c6ra08228a es_ES
dc.description.references Baştürk, E., Çakmakçi, E., Madakbaş, S., & Kahraman, M. V. (2017). Surface and proton conductivity properties of electrospun poly(vinyl butyral)/polyaniline nanofibers. Advances in Polymer Technology, 37(6), 1774-1781. doi:10.1002/adv.21836 es_ES
dc.description.references Ito, G., Tanaka, M., & Kawakami, H. (2018). Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics, 317, 244-255. doi:10.1016/j.ssi.2018.01.029 es_ES
dc.description.references Supaphol, P., & Chuangchote, S. (2008). On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science, 108(2), 969-978. doi:10.1002/app.27664 es_ES
dc.description.references Liao, G.-M., Li, P.-C., Lin, J.-S., Ma, W.-T., Yu, B.-C., Li, H.-Y., … Lue, S. J. (2016). Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes. Journal of Power Sources, 304, 136-145. doi:10.1016/j.jpowsour.2015.11.025 es_ES
dc.description.references Barzegar, F., Bello, A., Fabiane, M., Khamlich, S., Momodu, D., Taghizadeh, F., … Manyala, N. (2015). Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning. Journal of Physics and Chemistry of Solids, 77, 139-145. doi:10.1016/j.jpcs.2014.09.015 es_ES
dc.description.references Maiti, J., Kakati, N., Lee, S. H., Jee, S. H., Viswanathan, B., & Yoon, Y. S. (2012). Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? Journal of Power Sources, 216, 48-66. doi:10.1016/j.jpowsour.2012.05.057 es_ES
dc.description.references Tseng, C.-Y., Ye, Y.-S., Kao, K.-Y., Joseph, J., Shen, W.-C., Rick, J., & Hwang, B.-J. (2011). Interpenetrating network-forming sulfonated poly(vinyl alcohol) proton exchange membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 36(18), 11936-11945. doi:10.1016/j.ijhydene.2011.06.025 es_ES
dc.description.references Martínez-Felipe, A., Moliner-Estopiñán, C., Imrie, C. T., & Ribes-Greus, A. (2011). Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells. Journal of Applied Polymer Science, 124(2), 1000-1011. doi:10.1002/app.35138 es_ES
dc.description.references Kim, K.-J., Lee, S.-B., & Han, N.-W. (1994). Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean Journal of Chemical Engineering, 11(1), 41-47. doi:10.1007/bf02697513 es_ES
dc.description.references Figueiredo, K. C. S., Alves, T. L. M., & Borges, C. P. (2009). Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science, 111(6), 3074-3080. doi:10.1002/app.29263 es_ES
dc.description.references Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C, 28(4), 539-548. doi:10.1016/j.msec.2007.10.088 es_ES
dc.description.references Al-qudah Yahya H.F., Mahmoud, G. A., & Abdel Khalek, M. A. (2014). Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. Journal of Radiation Research and Applied Sciences, 7(2), 135-145. doi:10.1016/j.jrras.2013.12.008 es_ES
dc.description.references Kumeta, K., Nagashima, I., S. Matsui, & K. Mizoguchi. (2003). Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: Effect of neutralization of PAA. Journal of Applied Polymer Science, 90(9), 2420-2427. doi:10.1002/app.12910 es_ES
dc.description.references KIM, D., GUIVER, M., NAM, S., YUN, T., SEO, M., KIM, S., … RHIM, J. (2006). Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). Journal of Membrane Science, 281(1-2), 156-162. doi:10.1016/j.memsci.2006.03.025 es_ES
dc.description.references Kim, D. S., Cho, H. I., Kim, D. H., Lee, B. S., Lee, B. S., Yoon, S. W., … Rhim, J. W. (2009). Surface fluorinated poly(vinyl alcohol)/poly(styrene sulfonic acid-co-maleic acid) membrane for polymer electrolyte membrane fuel cells. Journal of Membrane Science, 342(1-2), 138-144. doi:10.1016/j.memsci.2009.06.034 es_ES
dc.description.references Liu, Y., Park, M., Shin, H. K., Pant, B., Choi, J., Park, Y. W., … Kim, H.-Y. (2014). Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. Journal of Industrial and Engineering Chemistry, 20(6), 4415-4420. doi:10.1016/j.jiec.2014.02.009 es_ES
dc.description.references Cao, S., Liu, Z., Hu, B., & Liu, H. (2010). Stabilization of electrospun poly(vinyl alcohol) nanofibrous mats in aqueous solutions. Chinese Journal of Polymer Science, 28(5), 781-788. doi:10.1007/s10118-010-9140-8 es_ES
dc.description.references Ding, B., Kim, H.-Y., Lee, S.-C., Shao, C.-L., Lee, D.-R., Park, S.-J., … Choi, K.-J. (2002). Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B: Polymer Physics, 40(13), 1261-1268. doi:10.1002/polb.10191 es_ES
dc.description.references Zhong, S., Cui, X., Gao, Y., Liu, W., & Dou, S. (2014). Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 39(31), 17857-17864. doi:10.1016/j.ijhydene.2014.08.040 es_ES
dc.description.references KIM, D. (2004). Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science, 240(1-2), 37-48. doi:10.1016/j.memsci.2004.04.010 es_ES
dc.description.references Ebenezer, D., Deshpande, A. P., & Haridoss, P. (2016). Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells. Journal of Power Sources, 304, 282-292. doi:10.1016/j.jpowsour.2015.11.048 es_ES
dc.description.references Morancho, J. M., Salla, J. M., Cadenato, A., Fernández-Francos, X., Colomer, P., Calventus, Y., … Ruíz, R. (2011). Thermal analysis of enhanced poly(vinyl alcohol)-based proton-conducting membranes crosslinked with sulfonation agents for direct methanol fuel cells. Journal of Applied Polymer Science, 124(S1), E57-E65. doi:10.1002/app.35500 es_ES
dc.description.references Zhang, J., Liu, L., Ma, C., Liu, Y., & Qiao, J. (2013). Poly(vinyl alcohol)/Sulfosuccinic Acid (PVA/SSA) as Proton-Conducting Membranes for Fuel Cells: Effect of Cross-Linking and Plasticizer Addition. ECS Transactions, 53(30), 29-34. doi:10.1149/05330.0029ecst es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references González-Guisasola, C., & Ribes-Greus, A. (2018). Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polymer Testing, 67, 55-67. doi:10.1016/j.polymertesting.2018.01.024 es_ES
dc.description.references Nunes, S. (2002). Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 203(1-2), 215-225. doi:10.1016/s0376-7388(02)00009-1 es_ES
dc.description.references Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a es_ES
dc.description.references Moore, T. T., Mahajan, R., Vu, D. Q., & Koros, W. J. (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE Journal, 50(2), 311-321. doi:10.1002/aic.10029 es_ES
dc.description.references Farooqui, U. R., Ahmad, A. L., & Hamid, N. A. (2018). Graphene oxide: A promising membrane material for fuel cells. Renewable and Sustainable Energy Reviews, 82, 714-733. doi:10.1016/j.rser.2017.09.081 es_ES
dc.description.references Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 es_ES
dc.description.references Qi, Y. Y., Tai, Z. X., Sun, D. F., Chen, J. T., Ma, H. B., Yan, X. B., … Xue, Q. J. (2012). Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. Journal of Applied Polymer Science, 127(3), 1885-1894. doi:10.1002/app.37924 es_ES
dc.description.references Wang, B., Chen, Z., Zhang, J., Cao, J., Wang, S., Tian, Q., … Xu, Q. (2014). Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol–gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 318-325. doi:10.1016/j.colsurfa.2014.06.006 es_ES
dc.description.references Zubair, N. A., Rahman, N. A., Lim, H. N., Zawawi, R. M., & Sulaiman, Y. (2016). Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques. RSC Advances, 6(21), 17720-17727. doi:10.1039/c5ra21230h es_ES
dc.description.references Wang, C., Li, Y., Ding, G., Xie, X., & Jiang, M. (2012). Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning. Journal of Applied Polymer Science, 127(4), 3026-3032. doi:10.1002/app.37656 es_ES
dc.description.references Yun, S., Im, H., Heo, Y., & Kim, J. (2011). Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 380(1-2), 208-215. doi:10.1016/j.memsci.2011.07.010 es_ES
dc.description.references Jia, L., & Qin, X. (2012). The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. Journal of Thermal Analysis and Calorimetry, 112(2), 595-605. doi:10.1007/s10973-012-2607-9 es_ES
dc.description.references Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E., & Dong, S. (2001). Methods to study the ionic conductivity of polymeric electrolytes using a.c. impedance spectroscopy. Journal of Solid State Electrochemistry, 6(1), 8-15. doi:10.1007/s100080000190 es_ES
dc.description.references Beydaghi, H., Javanbakht, M., & Kowsari, E. (2014). Synthesis and Characterization of Poly(vinyl alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Industrial & Engineering Chemistry Research, 53(43), 16621-16632. doi:10.1021/ie502491d es_ES
dc.description.references Jobando, V. O., & Quarles, C. A. (2007). Effect of cross-linking on the free volume properties of natural rubber. physica status solidi (c), 4(10), 3759-3762. doi:10.1002/pssc.200675782 es_ES
dc.description.references Bao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662b es_ES
dc.description.references Kakati, N., Maiti, J., Das, G., Lee, S. H., & Yoon, Y. S. (2015). An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid. International Journal of Hydrogen Energy, 40(22), 7114-7123. doi:10.1016/j.ijhydene.2015.04.004 es_ES
dc.description.references Mo, S., Peng, L., Yuan, C., Zhao, C., Tang, W., Ma, C., … Epstein, A. J. (2015). Enhanced properties of poly(vinyl alcohol) composite films with functionalized graphene. RSC Advances, 5(118), 97738-97745. doi:10.1039/c5ra15984a es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Teruel-Juanes, R., Rodriguez, I., Meseguer, F., & Ribes-Greus, A. (2015). Novel silicon microparticles to improve sunlight stability of raw polypropylene. European Polymer Journal, 70, 247-261. doi:10.1016/j.eurpolymj.2015.06.031 es_ES
dc.description.references RHIM, J., PARK, H., LEE, C., JUN, J., KIM, D., & LEE, Y. (2004). Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 238(1-2), 143-151. doi:10.1016/j.memsci.2004.03.030 es_ES
dc.description.references Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w es_ES
dc.description.references Chen, Y., Guo, J., & Kim, H. (2010). Preparation of poly(vinylidene fluoride)/phosphotungstic acid composite nanofiber membranes by electrospinning for proton conductivity. Reactive and Functional Polymers, 70(1), 69-74. doi:10.1016/j.reactfunctpolym.2009.10.006 es_ES
dc.description.references Albu, A.-M., Maior, I., Nicolae, C. A., & Bocăneală, F. L. (2016). NOVEL PVA PROTON CONDUCTING MEMBRANES DOPED WITH POLYANILINE GENERATED BY IN-SITU POLYMERIZATION. Electrochimica Acta, 211, 911-917. doi:10.1016/j.electacta.2016.06.098 es_ES
dc.description.references Badia, J. D., Gil-Castell, O., & Ribes-Greus, A. (2017). Long-term properties and end-of-life of polymers from renewable resources. Polymer Degradation and Stability, 137, 35-57. doi:10.1016/j.polymdegradstab.2017.01.002 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Ek, M., Karlsson, S., & Ribes-Greus, A. (2016). Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polymer Degradation and Stability, 132, 87-96. doi:10.1016/j.polymdegradstab.2016.03.038 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Ontoria-Oviedo, I., Castellano, D., Marco, B., Rabal, A., … Ribes-Greus, A. (2018). In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case. Polymer Testing, 66, 256-267. doi:10.1016/j.polymertesting.2018.01.027 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem