- -

Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes

Mostrar el registro completo del ítem

Gil-Castell, O.; Galindo-Alfaro, D.; Sanchez-Ballester, S.; Teruel Juanes, R.; David Badia, J.; Ribes-Greus, A. (2019). Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes. Nanomaterials. 9(3):1-20. https://doi.org/10.3390/nano9030397

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137586

Ficheros en el ítem

Metadatos del ítem

Título: Crosslinked sulfonated poly(vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes
Autor: Gil-Castell, O. Galindo-Alfaro, Diana Sanchez-Ballester, S. TERUEL JUANES, ROBERTO David Badia, José Ribes-Greus, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the ...[+]
Palabras clave: Poly(vinyl alcohol) (PVA) , Graphene oxide (GO) , Crosslinked,nanofibers , Polyelectrolyte , Proton conductivity
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano9030397
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano9030397
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU13%2F01916/ES/FPU13%2F01916/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-86711-C3-1-R/ES/SISTEMA INTEGRADO DE DESCARBONIZACION Y PRODUCCION DE ENERGIA BASADO EN PILAS DE COMBUSTIBLE DE METANOL DIRECTO PARA APLICACIONES NAVALES Y AEROESPACIALES/
Agradecimientos:
This research was funded by the MINISTERIO DE ECONOMIA, INDUSTRIA Y COMPETITIVIDAD, grant number ENE2017-86711-C3-1-R and by the MINISTERIO DE EDUCACION, CULTURA Y DEPORTE, grant number FPU13/01916.
Tipo: Artículo

References

Shabani, I., Hasani-Sadrabadi, M. M., Haddadi-Asl, V., & Soleimani, M. (2011). Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 368(1-2), 233-240. doi:10.1016/j.memsci.2010.11.048

Sood, R., Cavaliere, S., Jones, D. J., & Rozière, J. (2016). Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy, 26, 729-745. doi:10.1016/j.nanoen.2016.06.027

Rajesh, S., Zhao, Y., Fong, H., & Menkhaus, T. J. (2016). Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale, 8(43), 18376-18389. doi:10.1039/c6nr06295d [+]
Shabani, I., Hasani-Sadrabadi, M. M., Haddadi-Asl, V., & Soleimani, M. (2011). Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 368(1-2), 233-240. doi:10.1016/j.memsci.2010.11.048

Sood, R., Cavaliere, S., Jones, D. J., & Rozière, J. (2016). Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy, 26, 729-745. doi:10.1016/j.nanoen.2016.06.027

Rajesh, S., Zhao, Y., Fong, H., & Menkhaus, T. J. (2016). Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale, 8(43), 18376-18389. doi:10.1039/c6nr06295d

Junoh, H., Jaafar, J., Mohd Norddin, M. N. A., Ismail, A. F., Othman, M. H. D., Rahman, M. A., … Ilbeygi, H. (2015). A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell. Journal of Nanomaterials, 2015, 1-16. doi:10.1155/2015/690965

Gil-Castell, O., Badia, J. D., Strömberg, E., Karlsson, S., & Ribes-Greus, A. (2017). Effect of the dissolution time into an acid hydrolytic solvent to tailor electrospun nanofibrous polycaprolactone scaffolds. European Polymer Journal, 87, 174-187. doi:10.1016/j.eurpolymj.2016.12.005

Gil-Castell, O., Badia, J. D., & Ribes-Greus, A. (2018). Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. European Polymer Journal, 101, 273-281. doi:10.1016/j.eurpolymj.2018.02.030

Tanaka, M. (2015). Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polymer Journal, 48(1), 51-58. doi:10.1038/pj.2015.76

Li, H.-Y., & Liu, Y.-L. (2014). Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J. Mater. Chem. A, 2(11), 3783-3793. doi:10.1039/c3ta14264g

Pedroza, O. J. O., Dutra Filho, J. C., Picciani, P. H. S., & Dias, M. L. (2014). Morphology and proton conductivity of composite membranes based on poly(styrene sulfonic acid–maleic anhydride) nanofibers prepared by electrospinning. Ionics, 21(3), 755-764. doi:10.1007/s11581-014-1212-2

Choi, J., Lee, K. M., Wycisk, R., Pintauro, P. N., & Mather, P. T. (2010). Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells. Journal of The Electrochemical Society, 157(6), B914. doi:10.1149/1.3392294

Reyes-Rodriguez, J. L., Solorza-Feria, O., García-Bernabé, A., Giménez, E., Sahuquillo, O., & Compañ, V. (2016). Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Advances, 6(62), 56986-56999. doi:10.1039/c6ra08228a

Baştürk, E., Çakmakçi, E., Madakbaş, S., & Kahraman, M. V. (2017). Surface and proton conductivity properties of electrospun poly(vinyl butyral)/polyaniline nanofibers. Advances in Polymer Technology, 37(6), 1774-1781. doi:10.1002/adv.21836

Ito, G., Tanaka, M., & Kawakami, H. (2018). Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics, 317, 244-255. doi:10.1016/j.ssi.2018.01.029

Supaphol, P., & Chuangchote, S. (2008). On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science, 108(2), 969-978. doi:10.1002/app.27664

Liao, G.-M., Li, P.-C., Lin, J.-S., Ma, W.-T., Yu, B.-C., Li, H.-Y., … Lue, S. J. (2016). Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes. Journal of Power Sources, 304, 136-145. doi:10.1016/j.jpowsour.2015.11.025

Barzegar, F., Bello, A., Fabiane, M., Khamlich, S., Momodu, D., Taghizadeh, F., … Manyala, N. (2015). Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning. Journal of Physics and Chemistry of Solids, 77, 139-145. doi:10.1016/j.jpcs.2014.09.015

Maiti, J., Kakati, N., Lee, S. H., Jee, S. H., Viswanathan, B., & Yoon, Y. S. (2012). Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? Journal of Power Sources, 216, 48-66. doi:10.1016/j.jpowsour.2012.05.057

Tseng, C.-Y., Ye, Y.-S., Kao, K.-Y., Joseph, J., Shen, W.-C., Rick, J., & Hwang, B.-J. (2011). Interpenetrating network-forming sulfonated poly(vinyl alcohol) proton exchange membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 36(18), 11936-11945. doi:10.1016/j.ijhydene.2011.06.025

Martínez-Felipe, A., Moliner-Estopiñán, C., Imrie, C. T., & Ribes-Greus, A. (2011). Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells. Journal of Applied Polymer Science, 124(2), 1000-1011. doi:10.1002/app.35138

Kim, K.-J., Lee, S.-B., & Han, N.-W. (1994). Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean Journal of Chemical Engineering, 11(1), 41-47. doi:10.1007/bf02697513

Figueiredo, K. C. S., Alves, T. L. M., & Borges, C. P. (2009). Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science, 111(6), 3074-3080. doi:10.1002/app.29263

Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C, 28(4), 539-548. doi:10.1016/j.msec.2007.10.088

Al-qudah Yahya H.F., Mahmoud, G. A., & Abdel Khalek, M. A. (2014). Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. Journal of Radiation Research and Applied Sciences, 7(2), 135-145. doi:10.1016/j.jrras.2013.12.008

Kumeta, K., Nagashima, I., S. Matsui, & K. Mizoguchi. (2003). Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: Effect of neutralization of PAA. Journal of Applied Polymer Science, 90(9), 2420-2427. doi:10.1002/app.12910

KIM, D., GUIVER, M., NAM, S., YUN, T., SEO, M., KIM, S., … RHIM, J. (2006). Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). Journal of Membrane Science, 281(1-2), 156-162. doi:10.1016/j.memsci.2006.03.025

Kim, D. S., Cho, H. I., Kim, D. H., Lee, B. S., Lee, B. S., Yoon, S. W., … Rhim, J. W. (2009). Surface fluorinated poly(vinyl alcohol)/poly(styrene sulfonic acid-co-maleic acid) membrane for polymer electrolyte membrane fuel cells. Journal of Membrane Science, 342(1-2), 138-144. doi:10.1016/j.memsci.2009.06.034

Liu, Y., Park, M., Shin, H. K., Pant, B., Choi, J., Park, Y. W., … Kim, H.-Y. (2014). Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. Journal of Industrial and Engineering Chemistry, 20(6), 4415-4420. doi:10.1016/j.jiec.2014.02.009

Cao, S., Liu, Z., Hu, B., & Liu, H. (2010). Stabilization of electrospun poly(vinyl alcohol) nanofibrous mats in aqueous solutions. Chinese Journal of Polymer Science, 28(5), 781-788. doi:10.1007/s10118-010-9140-8

Ding, B., Kim, H.-Y., Lee, S.-C., Shao, C.-L., Lee, D.-R., Park, S.-J., … Choi, K.-J. (2002). Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B: Polymer Physics, 40(13), 1261-1268. doi:10.1002/polb.10191

Zhong, S., Cui, X., Gao, Y., Liu, W., & Dou, S. (2014). Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 39(31), 17857-17864. doi:10.1016/j.ijhydene.2014.08.040

KIM, D. (2004). Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science, 240(1-2), 37-48. doi:10.1016/j.memsci.2004.04.010

Ebenezer, D., Deshpande, A. P., & Haridoss, P. (2016). Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells. Journal of Power Sources, 304, 282-292. doi:10.1016/j.jpowsour.2015.11.048

Morancho, J. M., Salla, J. M., Cadenato, A., Fernández-Francos, X., Colomer, P., Calventus, Y., … Ruíz, R. (2011). Thermal analysis of enhanced poly(vinyl alcohol)-based proton-conducting membranes crosslinked with sulfonation agents for direct methanol fuel cells. Journal of Applied Polymer Science, 124(S1), E57-E65. doi:10.1002/app.35500

Zhang, J., Liu, L., Ma, C., Liu, Y., & Qiao, J. (2013). Poly(vinyl alcohol)/Sulfosuccinic Acid (PVA/SSA) as Proton-Conducting Membranes for Fuel Cells: Effect of Cross-Linking and Plasticizer Addition. ECS Transactions, 53(30), 29-34. doi:10.1149/05330.0029ecst

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

González-Guisasola, C., & Ribes-Greus, A. (2018). Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polymer Testing, 67, 55-67. doi:10.1016/j.polymertesting.2018.01.024

Nunes, S. (2002). Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 203(1-2), 215-225. doi:10.1016/s0376-7388(02)00009-1

Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a

Moore, T. T., Mahajan, R., Vu, D. Q., & Koros, W. J. (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE Journal, 50(2), 311-321. doi:10.1002/aic.10029

Farooqui, U. R., Ahmad, A. L., & Hamid, N. A. (2018). Graphene oxide: A promising membrane material for fuel cells. Renewable and Sustainable Energy Reviews, 82, 714-733. doi:10.1016/j.rser.2017.09.081

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017

Qi, Y. Y., Tai, Z. X., Sun, D. F., Chen, J. T., Ma, H. B., Yan, X. B., … Xue, Q. J. (2012). Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. Journal of Applied Polymer Science, 127(3), 1885-1894. doi:10.1002/app.37924

Wang, B., Chen, Z., Zhang, J., Cao, J., Wang, S., Tian, Q., … Xu, Q. (2014). Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol–gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 318-325. doi:10.1016/j.colsurfa.2014.06.006

Zubair, N. A., Rahman, N. A., Lim, H. N., Zawawi, R. M., & Sulaiman, Y. (2016). Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques. RSC Advances, 6(21), 17720-17727. doi:10.1039/c5ra21230h

Wang, C., Li, Y., Ding, G., Xie, X., & Jiang, M. (2012). Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning. Journal of Applied Polymer Science, 127(4), 3026-3032. doi:10.1002/app.37656

Yun, S., Im, H., Heo, Y., & Kim, J. (2011). Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 380(1-2), 208-215. doi:10.1016/j.memsci.2011.07.010

Jia, L., & Qin, X. (2012). The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. Journal of Thermal Analysis and Calorimetry, 112(2), 595-605. doi:10.1007/s10973-012-2607-9

Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E., & Dong, S. (2001). Methods to study the ionic conductivity of polymeric electrolytes using a.c. impedance spectroscopy. Journal of Solid State Electrochemistry, 6(1), 8-15. doi:10.1007/s100080000190

Beydaghi, H., Javanbakht, M., & Kowsari, E. (2014). Synthesis and Characterization of Poly(vinyl alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Industrial & Engineering Chemistry Research, 53(43), 16621-16632. doi:10.1021/ie502491d

Jobando, V. O., & Quarles, C. A. (2007). Effect of cross-linking on the free volume properties of natural rubber. physica status solidi (c), 4(10), 3759-3762. doi:10.1002/pssc.200675782

Bao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942. doi:10.1039/c1jm11662b

Kakati, N., Maiti, J., Das, G., Lee, S. H., & Yoon, Y. S. (2015). An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid. International Journal of Hydrogen Energy, 40(22), 7114-7123. doi:10.1016/j.ijhydene.2015.04.004

Mo, S., Peng, L., Yuan, C., Zhao, C., Tang, W., Ma, C., … Epstein, A. J. (2015). Enhanced properties of poly(vinyl alcohol) composite films with functionalized graphene. RSC Advances, 5(118), 97738-97745. doi:10.1039/c5ra15984a

Gil-Castell, O., Badia, J. D., Teruel-Juanes, R., Rodriguez, I., Meseguer, F., & Ribes-Greus, A. (2015). Novel silicon microparticles to improve sunlight stability of raw polypropylene. European Polymer Journal, 70, 247-261. doi:10.1016/j.eurpolymj.2015.06.031

RHIM, J., PARK, H., LEE, C., JUN, J., KIM, D., & LEE, Y. (2004). Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 238(1-2), 143-151. doi:10.1016/j.memsci.2004.03.030

Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w

Chen, Y., Guo, J., & Kim, H. (2010). Preparation of poly(vinylidene fluoride)/phosphotungstic acid composite nanofiber membranes by electrospinning for proton conductivity. Reactive and Functional Polymers, 70(1), 69-74. doi:10.1016/j.reactfunctpolym.2009.10.006

Albu, A.-M., Maior, I., Nicolae, C. A., & Bocăneală, F. L. (2016). NOVEL PVA PROTON CONDUCTING MEMBRANES DOPED WITH POLYANILINE GENERATED BY IN-SITU POLYMERIZATION. Electrochimica Acta, 211, 911-917. doi:10.1016/j.electacta.2016.06.098

Badia, J. D., Gil-Castell, O., & Ribes-Greus, A. (2017). Long-term properties and end-of-life of polymers from renewable resources. Polymer Degradation and Stability, 137, 35-57. doi:10.1016/j.polymdegradstab.2017.01.002

Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Ek, M., Karlsson, S., & Ribes-Greus, A. (2016). Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polymer Degradation and Stability, 132, 87-96. doi:10.1016/j.polymdegradstab.2016.03.038

Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010

Gil-Castell, O., Badia, J. D., Ontoria-Oviedo, I., Castellano, D., Marco, B., Rabal, A., … Ribes-Greus, A. (2018). In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case. Polymer Testing, 66, 256-267. doi:10.1016/j.polymertesting.2018.01.027

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem