- -

A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Squicciarini, G. es_ES
dc.contributor.author Thompson, D.J. es_ES
dc.contributor.author Ding, B. es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.date.accessioned 2020-02-22T21:01:46Z
dc.date.available 2020-02-22T21:01:46Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1612-2909 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137594
dc.description.abstract [EN] Curve squeal is an intense tonal noise occurring when a rail vehicle negotiates a sharp curve. The phenomenon can be considered to be chaotic, with a widely differing likelihood of occurrence on different days or even times of day. The term curve squeal may include several different phenomena with a wide range of dominant frequencies and potentially different excitation mechanisms. This review addresses the different squeal phenomena and the approaches used to model squeal noise; both time-domain and frequency-domain approaches are discussed and compared. Supporting measurements using test rigs and field tests are also summarised. A particular aspect that is addressed is the excitation mechanism. Two mechanisms have mainly been considered in previous publications. In many early papers the squeal was supposed to be generated by the so-called falling friction characteristic in which the friction coefficient reduces with increasing sliding velocity. More recently the mode coupling mechanism has been raised as an alternative. These two mechanisms are explained and compared and the evidence for each is discussed. Finally, a short review is given of mitigation measures and some suggestions are offered for why these are not always successful. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Notes on Numerical Fluid Mechanics and Multidisciplinary Design es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/978-3-319-73411-8_1 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Squicciarini, G.; Thompson, D.; Ding, B.; Baeza González, LM. (2018). A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 139:3-41. https://doi.org/10.1007/978-3-319-73411-8_1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-319-73411-8_1 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.relation.pasarela S\387376 es_ES
dc.description.references Anderson, D., Wheatley, N., Fogarty, B., Jiang, J., Howie, A., Potter, W.: Mitigation of curve squeal noise in Queensland, New South Wales and South Australia. In: Conference on Railway Engineering. pp. 625–636, Perth, Australia (2008) es_ES
dc.description.references Hanson, D., Jiang, J., Dowdell, B., Dwight, R.: Curve squeal: causes, treatments and results. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 249, pp. 6316–6323. Melbourne, Australia (2014) es_ES
dc.description.references Rudd, M.J.: Wheel/rail noise—part II: wheel squeal. J. Sound Vib. 46(3), 381–394 (1976) es_ES
dc.description.references Remington, P.J.: Wheel/rail squeal and impact noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 116(2), 339–353 (1987) es_ES
dc.description.references Remington, P.J.: Wheel/rail rolling noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 120(2), 203–226 (1988) es_ES
dc.description.references Wickens, A.H.: Fundamentals of Rail Vehicle Dynamics, Guidance and Stability. Swets & Zeitlinger, Lisse (2003) es_ES
dc.description.references Thompson, D.J.: Railway Noise and Vibration: Mechanisms, Modelling and Mitigation. Elsevier, Oxford (2009) es_ES
dc.description.references Kalker, J.J.: Three Dimensional Elastic Bodies in Rolling Contact. Kluwer academic publishers, Dordrecht (1990) es_ES
dc.description.references Vermeulen, P.J., Johnson, K.L.: Contact of nonspherical elastic bodies transmitting tangential forces. J. Appl. Mech. 31(2), 338–340 (1964) es_ES
dc.description.references Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep-force models for rail vehicle dynamic analysis. In: Proceedings of 8th IAVSD Symposium, Cambridge MA, Swets and Zeitlinger, Lisse, pp. 591–605 (1983) es_ES
dc.description.references Huang, Z.Y.: Theoretical Modelling of Railway Curve Squeal. Ph.D. thesis, University of Southampton, UK (2007) es_ES
dc.description.references Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002) es_ES
dc.description.references Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. J. Appl. Math. Mech. 83(8), 524–534 (2003) es_ES
dc.description.references Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech.-A/Solids 26(1), 106–122 (2007) es_ES
dc.description.references Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) es_ES
dc.description.references Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003) es_ES
dc.description.references Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vibr. 1(1), 5–9 (2013) es_ES
dc.description.references Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3–4), 207–231 (2005) es_ES
dc.description.references Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Prentice Hall. (2008) es_ES
dc.description.references De Beer, F.G., Janssens, M.H.A., Kooijman, P.P., van Vliet, W.J.: Curve squeal of railbound vehicles (part 1): frequency domain calculation model. In: Proceedings of Internoise, vol. 3, pp. 1560–1563. Nice, France (2000) es_ES
dc.description.references Von Stappenbeck, H.: Das Kurvengeräusch der Straßenbahn. Möglichkeiten zu seiner Unterdrückung. Z. VDI 96(6), 171–175 (1954) es_ES
dc.description.references Van Ruiten, C.J.M.: Mechanism of squeal noise generated by trams. J. Sound Vib. 120(2), 245–253 (1988) es_ES
dc.description.references Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 1st report, on frequency of squeal. Bull. Jpn. Soc. Mech. Eng. 25, 1127–1134 (1982) es_ES
dc.description.references Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 2nd report, mechanism of specific squeal frequency. Bull. Jpn. Soc. Mech. Eng. 27, 301–308 (1984) es_ES
dc.description.references Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 3rd report, squeal of a disk simulating a wheel in internal resonances. Bull. Jpn. Soc. Mech. Eng. 28, 500–507 (1985) es_ES
dc.description.references Schneider, E., Popp, K., Irretier, H.: Noise generation in railway wheels due to rail-wheel contact forces. J. Sound Vib. 120(2), 227–244 (1988) es_ES
dc.description.references Kraft, K.: Der Einfluß der Fahrgeschwindigkeit auf den Haftwert zwischen Rad und Schiene. Arch. für Eisenbahntechnik 22, 58–78 (1967) es_ES
dc.description.references Fingberg, U.: A model of wheel-rail squealing noise. J. Sound Vib. 143(3), 365–377 (1990) es_ES
dc.description.references Périard, F.: Wheel-Rail Noise Generation: Curve Squealing by Trams. Ph.D. thesis, Technische Universiteit Delft (1998) es_ES
dc.description.references Heckl, M.A., Abrahams, I.D.: Curve squeal of train wheels, part 1: mathematical model for its generation. J. Sound Vib. 229(3), 669–693 (2000) es_ES
dc.description.references Heckl, M.A.: Curve squeal of train wheels, part 2: which wheel modes are prone to squeal? J. Sound Vib. 229(3), 695–707 (2000) es_ES
dc.description.references Heckl, M.A.: Curve squeal of train wheels: unstable modes and limit cycles. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 458, 1949–1965 (2002) es_ES
dc.description.references Liu, X., Meehan, P.A.: Wheel squeal noise: a simplified model to simulate the effect of rolling speed and angle of attack. J. Sound Vib. 338, 184–198 (2015) es_ES
dc.description.references Meehan, P.A., Liu, X.: Analytical prediction and investigation of wheel squeal amplitude. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 69–80. Springer, Heidelberg (2018) es_ES
dc.description.references Kooijman, P.P., Van Vliet, W.J., Janssens, M.H.A., De Beer, F.G.: Curve squeal of railbound vehicles (part 2): set-up for measurement of creepage dependent friction coefficient. In: Proceedings of Internoise, vol. 3, pp. 1564–1567. Nice, France (2000) es_ES
dc.description.references De Beer, F.G., Janssens, M.H.A., Kooijman, P.P.: Squeal noise of rail-bound vehicles influenced by lateral contact position. J. Sound Vib. 267(3), 497–507 (2003) es_ES
dc.description.references Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J. Sound Vib. 193(1), 123–135 (1996) es_ES
dc.description.references Monk-Steel, A., Thompson, D.J.: Models for railway curve squeal noise. In: VIII International Conference on Recent Advances in Structural Dynamics, Southampton, UK (2003) es_ES
dc.description.references Barman, J.F., Katzenelson, J.: A generalized Nyquist-type stability criterion for multivariable feedback systems. Int. J. Control 20(4), 593–622 (1974) es_ES
dc.description.references Huang, Z.Y., Thompson, D.J., Jones, C.J.C.: Squeal prediction for a bogied vehicle in a curve. In Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM vol. 99, pp. 313–319. Springer, Heidelberg (2008) es_ES
dc.description.references Hsu, S.S., Huang, Z., Iwnicki, S.D., Thompson, D.J., Jones, C.J., Xie, G., Allen, P.D.: Experimental and theoretical investigation of railway wheel squeal. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 221(1), 59–73 (2007) es_ES
dc.description.references Squicciarini, G., Usberti, S., Thompson, D.J., Corradi, R., Barbera, A.: Curve squeal in the presence of two wheel/rail contact points. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 603–610. Springer, Heidelberg (2015) es_ES
dc.description.references Xie, G., Allen, P.D., Iwnicki, S.D., Alonso, A., Thompson, D.J., Jones, C.J., Huang, Z.Y.: Introduction of falling friction coefficients into curving calculations for studying curve squeal noise. Veh. Syst. Dyn. 44(sup1), 261–271 (2006) es_ES
dc.description.references Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Veh. Syst. Dyn. 43(4), 233–244 (2005) es_ES
dc.description.references Chiello, O., Ayasse, J.B., Vincent, N., Koch, J.R.: Curve squeal of urban rolling stock—part 3: theoretical model. J. Sound Vib. 293(3), 710–727 (2006) es_ES
dc.description.references Collette, C.: Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench. Shock Vibr. 19(2), 145–153 (2012) es_ES
dc.description.references Brunel, J.F., Dufrénoy, P., Naït, M., Muñoz, J.L., Demilly, F.: Transient models for curve squeal noise. J. Sound Vib. 293(3), 758–765 (2006) es_ES
dc.description.references Glocker, C., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurement, modelling and simulation. J. Sound Vib. 324(1), 365–386 (2009) es_ES
dc.description.references Pieringer, A.: A numerical investigation of curve squeal in the case of constant wheel/rail friction. J. Sound Vib. 333(18), 4295–4313 (2014) es_ES
dc.description.references Pieringer, A., Kropp, W.: A time-domain model for coupled vertical and tangential wheel/rail interaction—a contribution to the modelling of curve squeal. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 221–229. Springer, Heidelberg (2012) es_ES
dc.description.references Pieringer, A., Baeza, L., Kropp. W.: Modelling of railway curve squeal including effects of wheel rotation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 417–424. Springer, Heidelberg (2015) es_ES
dc.description.references Zenzerovic, I., Pieringer, A., Kropp. W.: Towards an engineering model for curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 433–440. Springer, Heidelberg (2015) es_ES
dc.description.references Zenzerovic, I., Kropp, W., Pieringer, A.: An engineering time-domain model for curve squeal: tangential point-contact model and Green’s functions approach. J. Sound Vib. 376, 149–165 (2016) es_ES
dc.description.references Pieringer, A., Torstensson, P.T., Giner, J., Baeza, L.: Investigation of railway curve squeal using a combination of frequency- and time-domain models. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 81–93. Springer, Heidelberg (2018) es_ES
dc.description.references Chen, G.X., Xiao, J.B., Liu, Q.Y., Zhou. Z.R.: Complex eigenvalue analysis of railway curve squeal. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 433–439. Springer, Heidelberg (2008) es_ES
dc.description.references Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Analysis of wheel squeal due to unsteady longitudinal creepage using the complex eigenvalue method. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 55–67. Springer, Heidelberg (2018) es_ES
dc.description.references Wang, C., Dwight, R., Li, W., Jiang, J.: Prediction on curve squeal in the case of constant wheel rail friction coefficient. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp XXX–XXX. Springer, Heidelberg (2018) es_ES
dc.description.references Ding, B., Squicciarini, G., Thompson, D.J.: Effects of rail dynamics and friction characteristics on curve squeal. In: XIII International Conference on Motion and Vibration Control and XII International Conference on Recent Advances in Structural Dynamics (MoViC/RASD), Southampton (2016) es_ES
dc.description.references Bleedorn, T.G., Johnstone. B.: Steerable steel wheel systems and wheel noise suppression. In: Conference Rec IAS 12th Annual Meeting, Los Angeles, California (1977) es_ES
dc.description.references Koch, J.R., Vincent, N., Chollet, H., Chiello, O.: Curve squeal of urban rolling stock—part 2: parametric study on a 1/4 scale test rig. J. Sound Vib. 293(3), 701–709 (2006) es_ES
dc.description.references Logston, C.F., Itami, G.S.: Locomotive friction-creep studies. ASME J. Eng. Ind. 102(3), 275–281 (1980) es_ES
dc.description.references Ertz, M.: Creep force laws for wheel/rail contact with temperature-dependent coefficient of friction. In: 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest (2002) es_ES
dc.description.references Lang, W., Roth, R.: Optimale Kraftschlussausnutzung bei Hochleistungs-Schienenfahrzeugen. Eisenbahntechnische Rundsch. 42, 61–66 (1993) es_ES
dc.description.references Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258(7), 992–1000 (2005) es_ES
dc.description.references Zhang, W., Chen, J., Wu, X., Jin, X.: Wheel/rail adhesion and analysis by using full scale roller rig. Wear 253(1), 82–88 (2002) es_ES
dc.description.references Harrison, H., McCanney, T., Cotter, J.: Recent developments in coefficient of friction measurements at the rail/wheel interface. Wear 253(1), 114–123 (2002) es_ES
dc.description.references Gallardo-Hernandez, E.A., Lewis, R.: Twin disc assessment of wheel/rail adhesion. Wear 265(9), 1309–1316 (2008) es_ES
dc.description.references Fletcher, D.I., Lewis, S.: Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine. Wear 298–299, 57–65 (2013) es_ES
dc.description.references Fletcher, D.I.: A new two-dimensional model of rolling–sliding contact creep curves for a range of lubrication types. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227(6), 529–537 (2013) es_ES
dc.description.references Matsumoto, A., Sato, Y., Ono, H., Wang, Y., Yamamoto, M., Tanimoto, M., Oka, Y.: Creep force characteristics between rail and wheel on scaled model. Wear 253(1), 199–203 (2002) es_ES
dc.description.references Janssens, M.H.A., van Vliet, W.J., Kooijman, P.P., De Beer, F.G.: Curve squeal of railbound vehicles (part 3): measurement method and results. In: Proceedings of Internoise, vol. 3, pp. 1568–1571, Nice, France (2000) es_ES
dc.description.references Monk-Steel, A.D., Thompson, D.J., De Beer, F.G., Janssens, M.H.A.: An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage. J. Sound Vib. 293(3), 766–776 (2006) es_ES
dc.description.references Liu, X., Meehan, P.A.: Investigation of the effect of lateral adhesion and rolling speed on wheel squeal noise. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 227(5), 469–480 (2013) es_ES
dc.description.references Liu, X., Meehan, P.A.: Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 310(1), 12–19 (2014) es_ES
dc.description.references Liu, X., Meehan, P.A.: Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers. J. Sound Vib. 371, 393–405 (2016) es_ES
dc.description.references Jie, E., Kim, J.Y., Hwang, D.H., Lee, J.H., Kim, K.J., Kim, J.C.: An experimental study of squeal noise characteristics for railways using a scale model test rig. In: J. Pombo (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliari, Sardinia, Italy (2016) es_ES
dc.description.references Eadie, D.T., Santoro, M., Kalousek, J.: Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves. Wear 258(7), 1148–1155 (2005) es_ES
dc.description.references Bullen, R., Jiang, J.: Algorithms for detection of rail wheel squeal. In: 20th International Congress on Acoustics 2010, ICA 2010—Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society. pp. 2212–2216 (2010) es_ES
dc.description.references Stefanelli, R., Dual, J., Cataldi-Spinola, E.: Acoustic modelling of railway wheels and acoustic measurements to determine involved eigenmodes in the curve squealing phenomenon. Veh. Syst. Dyn. 44(sup1), 286–295 (2006) es_ES
dc.description.references Vincent, N., Koch, J.R., Chollet, H., Guerder, J.Y.: Curve squeal of urban rolling stock—part 1: state of the art and field measurements. J. Sound Vib. 293(3), 691–700 (2006) es_ES
dc.description.references Anderson, D., Wheatley, N.: Mitigation of wheel squeal and flanging noise on the Australian network. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 399–405. Springer, Heidelberg (2008) es_ES
dc.description.references Curley, D., Anderson, D.C., Jiang, J., Hanson, D.: Field trials of gauge face lubrication and top-of-rail friction modification for curve noise mitigation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 449–456. Springer, Heidelberg (2015) es_ES
dc.description.references Jiang, J., Hanson, D., Dowdell, B.: Wheel squeal—insights from wayside condition monitoring measurements and field trials. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 41–53. Springer, Heidelberg (2018) es_ES
dc.description.references Jiang, J., Dwight, R., Anderson, D.: Field verification of curving noise mechanisms. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 349–356. Springer, Heidelberg (2012) es_ES
dc.description.references Jiang, J., Anderson, D.C., Dwight, R.: The mechanisms of curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 587–594. Springer, Heidelberg (2015) es_ES
dc.description.references Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Experimental characterisation of railway wheel squeal occurring in large-radius curves. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(6), 1561–1574 (2016) es_ES
dc.description.references Corradi, R., Crosio, P., Manzoni, S., Squicciarini, G.: Experimental investigation on squeal noise in tramway sharp curves. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven (2011) es_ES
dc.description.references Merideno, I., Nieto, J., Gil-Negrete, N., Landaberea, A., Iartza, J.: Constrained layer damper modelling and performance evaluation for eliminating squeal noise in trams. Shock and Vibration (2014) es_ES
dc.description.references Nelson J.T.: Wheel/rail noise control manual, TCRP Report 23 (1997) es_ES
dc.description.references Krüger, F.: Schall- und Erschütterungsschutz im Schienenverkehr. Expert Verlag, Renningen (2001) es_ES
dc.description.references Elbers, F., Verheijen, E.: Railway noise technical measures catalogue, UIC report UIC003-01-04fe (2013) es_ES
dc.description.references Oertli, J.: Combatting curve squeal, phase II, final report, UIC (2005) es_ES
dc.description.references Eadie, D.T., Santoro, M., Powell, W.: Local control of noise and vibration with KELTRACK™ friction modifier and protector® trackside application: an integrated solution. J. Sound Vib. 267(3), 761–772 (2003) es_ES
dc.description.references Eadie, D.T., Santoro, M.: Top-of-rail friction control for curve noise mitigation and corrugation rate reduction. J. Sound Vib. 293(3), 747–757 (2006) es_ES
dc.description.references Suda, Y., Iwasa, T., Komine, H., Tomeoka, M., Nakazawa, H., Matsumoto, K., Nakai, T., Tanimoto, M., Kishimoto, Y.: Development of onboard friction control. Wear 258(7), 1109–1114 (2005) es_ES
dc.description.references Bühler, S., Thallemer, B.: How to avoid squeal noise on railways: state of the art and practical experience. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 406–411. Springer, Heidelberg (2008) es_ES
dc.description.references Jones, C.J.C., Thompson, D.J.: Rolling noise generated by railway wheels with visco-elastic layers. J. Sound Vib. 231(3), 779–790 (2000) es_ES
dc.description.references Wetta, P., Demilly, F.: Reduction of wheel squeal noise generated on curves or during braking. In 11th International of Wheelset Congress, Paris (1995) es_ES
dc.description.references Brunel, J.F., Dufrénoy, P., Demilly, F.: Modelling of squeal noise attenuation of ring damped wheels. Appl. Acoust. 65(5), 457–471 (2004) es_ES
dc.description.references Marjani, S.R., Younesian, D.: Suppression of train wheel squeal noise by shunted piezoelectric elements. Int. J. Struct. Stab. Dyn. (2016) es_ES
dc.description.references Heckl, M.A., Huang, X.Y.: Curve squeal of train wheels, part 3: active control. J. Sound Vib. 229(3), 709–735 (2000) es_ES
dc.description.references Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: A tuned damping device for reducing noise from railway track. Appl. Acoust. 68(1), 43–57 (2007) es_ES
dc.description.references Jiang, J., Ying, I., Hanson, D., Anderson, D.C.: An investigation of the influence of track dynamics on curve noise. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 441–448. Springer, Heidelberg (2015) es_ES
dc.description.references Toward, M., Squicciarini, G., Thompson, D.J.: Reducing freight wagon noise at source. Int. Railway J. March, 47–49 (2015) es_ES
dc.description.references Illingworth, R., Pollard, M.G.: The use of steering axle suspensions to reduce wheel and rail wear in curves. Proc. Inst. Mech. Eng. 196(1), 379–385 (1982) es_ES
dc.description.references Garcia, J.F., Olaizola, X., Martin, L.M., Gimenez, J.G.: Theoretical comparison between different configurations of radial and conventional bogies. Veh. Syst. Dyn. 33(4), 233–259 (2000) es_ES
dc.description.references Bruni, S., Goodall, R., Mei, T.X., Tsunashima, H.: Control and monitoring for railway vehicle dynamics. Veh. Syst. Dyn. 45(7–8), 743–779 (2007) es_ES
dc.description.references Hiensch, M., Larsson, P.O., Nilsson, O., Levy, D., Kapoor, A., Franklin, F., Nielsen, J., Ringsberg, J., Josefson, L.: Two-material rail development: field test results regarding rolling contact fatigue and squeal noise behaviour. Wear 258(7), 964–972 (2005) es_ES
dc.description.references Kopp, E.: Fünf Jahre Erfahrungen mit asymmetrisch geschliffenen Schienenprofilen. Eisenbahn Techn. Rundsch. 40, 665 (1991) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem