- -

Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon

Mostrar el registro completo del ítem

North, M.; Dalle Zotte, A.; Hoffman, L. (2019). Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Science. 27(4):185-198. https://doi.org/10.4995/wrs.2019.11905

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137911

Ficheros en el ítem

Metadatos del ítem

Título: Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon
Autor: North, M. Dalle Zotte, A. Hoffman, L.
Fecha difusión:
Resumen:
[EN] The purpose of this study was to add to the current understanding of rabbit caecal microbiota. This involved describing its microbial composition and linking this to live performance parameters, as well as determining ...[+]
Palabras clave: Flavonoid , Growth , Gut , Microbiota , Oryctolagus cuniculus , Rabbit
Derechos de uso: Reserva de todos los derechos
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2019.11905
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2019.11905
Código del Proyecto:
info:eu-repo/grantAgreement/NRF//THRIP%2F64%2F19%2F04%2F2017/
Agradecimientos:
This research was supported by the South African Research Chairs Initiative (SARChI) and partly funded by the South African Department of Science and Technology (UID number: 84633), as administered by the National Research ...[+]
Tipo: Artículo

References

Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115. https://doi.org/10.1016/j.femsle.2005.01.028

Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502.

Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707. https://doi.org/10.1371/journal.pone.0105707 [+]
Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115. https://doi.org/10.1016/j.femsle.2005.01.028

Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502.

Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707. https://doi.org/10.1371/journal.pone.0105707

Biddle A., Stewart L., Blanchard J., Leschine S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity, 5: 627-640. https://doi.org/10.3390/d5030627

Braune A., Gütschow M., Engst W., Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol., 67: 5558-5567. https://doi.org/10.1128/AEM.67.12.5558-5567.2001

Clench M.H., Mathias J.R. 1995. The avian cecum: A review. Wilson Bull., 107: 93-121. https://www.jstor.org/stable/4163516

Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439. https://doi.org/10.1017/S1751731113001079

Cushnie T.P.T., Lamb A.J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002

De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. 2016. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet. Res., 12: 1-9. https://doi.org/10.1186/s12917-016-0653-4

De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W.B. 2009. Bergey's Manual of Systematic Bacteriology, Volume 3 - The Firmicutes, 2nd edition. Springer, New York, USA.

Duda-Chodak A. 2012. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol., 63(5): 497-503.

Espley R.V., Butts C.A., Laing W.A., Martell S., Smith H., McGhie T.K., Zhang J., Paturi G., Hedderley D., Bovy A., Schouten H.J., Putterill J., Allan A.C., Hellens R.P. 2014. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 144: 146-154. https://doi.org/10.3945/jn.113.182659

Fan L., Zhao X., Tong Q., Zhou X., Chen J., Xiong W., Fang J., Wang W., Shi C. 2018. Interactions of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) with gut microbiota. J. Food Sci., 83: 1444-1453. https://doi.org/10.1111/1750-3841.14128

García-Amado M.A., Godoy-Vitorino F., Piceno Y.M., Tom L.M., Andersen G.L., Herrera E.A., Domínguez-Bello M.G. 2012. Bacterial diversity in the cecum of the world's largest living rodent (Hydrochoerus hydrochaeris ). Microb. Ecol., 63: 719-725. https://doi.org/10.1007/s00248-011-9963-z

Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6: e17447. https://doi.org/10.1371/journal.pone.0017447

Green M.R., McCormick C.M. 2016. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamicpituitary-adrenal axis in the rat. Gen. Comp. Endocrinol., 234: 110-116. https://doi.org/10.1016/j.ygcen.2016.02.004

Gunn P.J., Middleton B., Davies S.K., Revell V.L., Skene D.J. 2016. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int., 33: 39-50. https://doi.org/10.3109/07420528.2015.1112396

Herald T.J., Gadgil P., Tilley M. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric., 92: 2326-2331. https://doi.org/10.1002/jsfa.5633

Huang J., Chen L., Xue B., Liu Q., Ou S., Wang Y., Peng X. 2016. Different flavonoids can shape unique gut microbiota profile in vitro. J. Food Sci., 81: H2273-H2279. https://doi.org/10.1111/1750-3841.13411

Jami E., White B.A., Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9: e85423. https://doi.org/10.1371/journal.pone.0085423

Kirschbaum C., Wüst S., Hellhammer D. 1992. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med., 54: 648-657.

Lee H.C., Jenner A.M., Low C.S., Lee Y.K. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 157: 876-884. https://doi.org/10.1016/j.resmic.2006.07.004

Lin Y.T., Hsui S.L., Hou Y.C., Chen H.Y., Chao P.D.L. 2003. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora. Biol. Pharm. Bull., 26: 747-751. https://doi.org/10.1248/bpb.26.747

Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16S-DNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit: Impact of the hygiene of housing and of the intake level. In Proc.: 8th INRARRI Symposium on Gut Microbiology, 18-21 June, 2012. Clermont-Ferrand, France. 1: 57.

McBee R.H. 1971. Significance of intestinal microflora in herbivory. Annu. Rev. Ecol. Syst., 2: 165-176. https://doi.org/10.1146/annurev.es.02.110171.001121

Michelland R.J., Combes S., Monteils V., Cauquil L., Gidenne T., Fortun-Lamothe L. 2010. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe, 16: 61-65. https://doi.org/10.1016/j.anaerobe.2009.05.002

Monteils V., Cauquil L., Combes S., Godon J.-J., Gidenne T. 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol. Ecol., 66: 620-629. https://doi.org/10.1111/j.1574-6941.2008.00611.x

North M.K., Dalle Zotte A., Hoffman L.C. 2018. Effect of quercetin supplementation on the growth, feed efficiency and serum hormone levels of New Zealand White rabbits. S. Afr. J. Anim. Sci., 48: 1128-1139. https://www.ajol.info/index.php/sajas/article/view/183157. Accessed: May 2019. https://doi.org/10.4314/sajas.v48i6.17

Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. 2018. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 61: 41-49. https://doi.org/10.1016/j.mam.2018.01.001

Rodríguez-Romero N., Abecia L., Fondevila M. 2013. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels. Anaerobe, 20: 50-57. https://doi.org/10.1016/j.anaerobe.2013.02.001

Russell J.B., Wilson D.B. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci., 79: 1503-

https://doi.org/10.3168/jds.S0022-0302(96)76510-4

Salanitro J.P., Muirhead P.A., Goodman J.R. 1976. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol., 32: 623-632. https://aem.asm.org/content/32/4/623.short. Accessed: May 2019.

Sanz Y., Santacruz A., Gauffin P. 2010. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc., 69: 434-441. https://doi.org/10.1017/S0029665110001813

Simmering R., Pforte H., Jacobasch G., Blaut M. 2002. The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids in vivo. FEMS Microbiol. Ecol., 40: 243-248. https://doi.org/10.1111/j.1574-6941.2002.tb00957.x

Sirotek K., Marounek M., Rada V., Benda V. 2001. Isolation and characterization of rabbit caecal pectinolytic bacteria. Folia Microbiol., 46: 79-82. https://doi.org/10.1007/BF02825893

Steelman S.M., Chowdhary B.P., Dowd S., Suchodolski J., Janečka J.E. 2012. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res., 8: 231. https://doi.org/10.1186/1746-6148-8-231

Tilbrook A.J., Turner A.I., Clarke I.J. 2000. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev. Reprod., 5: 105-113. https://doi.org/10.1530/ror.0.0050105

Vasantha Rupasinghe H.P., Wang L., Huber G.M., Pitts N.L. 2008. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem., 107: 1217-1224. https://doi.org/10.1016/j.foodchem.2007.09.057

Yen P.M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 81: 1097-1142. https://doi.org/10.1152/physrev.2001.81.3.1097

Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784. https://doi.org/10.1139/cjm-2015-0201

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem