Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115. https://doi.org/10.1016/j.femsle.2005.01.028
Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502.
Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707. https://doi.org/10.1371/journal.pone.0105707
[+]
Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115. https://doi.org/10.1016/j.femsle.2005.01.028
Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502.
Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707. https://doi.org/10.1371/journal.pone.0105707
Biddle A., Stewart L., Blanchard J., Leschine S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity, 5: 627-640. https://doi.org/10.3390/d5030627
Braune A., Gütschow M., Engst W., Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol., 67: 5558-5567. https://doi.org/10.1128/AEM.67.12.5558-5567.2001
Clench M.H., Mathias J.R. 1995. The avian cecum: A review. Wilson Bull., 107: 93-121. https://www.jstor.org/stable/4163516
Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439. https://doi.org/10.1017/S1751731113001079
Cushnie T.P.T., Lamb A.J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. 2016. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet. Res., 12: 1-9. https://doi.org/10.1186/s12917-016-0653-4
De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W.B. 2009. Bergey's Manual of Systematic Bacteriology, Volume 3 - The Firmicutes, 2nd edition. Springer, New York, USA.
Duda-Chodak A. 2012. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol., 63(5): 497-503.
Espley R.V., Butts C.A., Laing W.A., Martell S., Smith H., McGhie T.K., Zhang J., Paturi G., Hedderley D., Bovy A., Schouten H.J., Putterill J., Allan A.C., Hellens R.P. 2014. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 144: 146-154. https://doi.org/10.3945/jn.113.182659
Fan L., Zhao X., Tong Q., Zhou X., Chen J., Xiong W., Fang J., Wang W., Shi C. 2018. Interactions of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) with gut microbiota. J. Food Sci., 83: 1444-1453. https://doi.org/10.1111/1750-3841.14128
García-Amado M.A., Godoy-Vitorino F., Piceno Y.M., Tom L.M., Andersen G.L., Herrera E.A., Domínguez-Bello M.G. 2012. Bacterial diversity in the cecum of the world's largest living rodent (Hydrochoerus hydrochaeris ). Microb. Ecol., 63: 719-725. https://doi.org/10.1007/s00248-011-9963-z
Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6: e17447. https://doi.org/10.1371/journal.pone.0017447
Green M.R., McCormick C.M. 2016. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamicpituitary-adrenal axis in the rat. Gen. Comp. Endocrinol., 234: 110-116. https://doi.org/10.1016/j.ygcen.2016.02.004
Gunn P.J., Middleton B., Davies S.K., Revell V.L., Skene D.J. 2016. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int., 33: 39-50. https://doi.org/10.3109/07420528.2015.1112396
Herald T.J., Gadgil P., Tilley M. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric., 92: 2326-2331. https://doi.org/10.1002/jsfa.5633
Huang J., Chen L., Xue B., Liu Q., Ou S., Wang Y., Peng X. 2016. Different flavonoids can shape unique gut microbiota profile in vitro. J. Food Sci., 81: H2273-H2279. https://doi.org/10.1111/1750-3841.13411
Jami E., White B.A., Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9: e85423. https://doi.org/10.1371/journal.pone.0085423
Kirschbaum C., Wüst S., Hellhammer D. 1992. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med., 54: 648-657.
Lee H.C., Jenner A.M., Low C.S., Lee Y.K. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 157: 876-884. https://doi.org/10.1016/j.resmic.2006.07.004
Lin Y.T., Hsui S.L., Hou Y.C., Chen H.Y., Chao P.D.L. 2003. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora. Biol. Pharm. Bull., 26: 747-751. https://doi.org/10.1248/bpb.26.747
Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16S-DNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit: Impact of the hygiene of housing and of the intake level. In Proc.: 8th INRARRI Symposium on Gut Microbiology, 18-21 June, 2012. Clermont-Ferrand, France. 1: 57.
McBee R.H. 1971. Significance of intestinal microflora in herbivory. Annu. Rev. Ecol. Syst., 2: 165-176. https://doi.org/10.1146/annurev.es.02.110171.001121
Michelland R.J., Combes S., Monteils V., Cauquil L., Gidenne T., Fortun-Lamothe L. 2010. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe, 16: 61-65. https://doi.org/10.1016/j.anaerobe.2009.05.002
Monteils V., Cauquil L., Combes S., Godon J.-J., Gidenne T. 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol. Ecol., 66: 620-629. https://doi.org/10.1111/j.1574-6941.2008.00611.x
North M.K., Dalle Zotte A., Hoffman L.C. 2018. Effect of quercetin supplementation on the growth, feed efficiency and serum hormone levels of New Zealand White rabbits. S. Afr. J. Anim. Sci., 48: 1128-1139. https://www.ajol.info/index.php/sajas/article/view/183157. Accessed: May 2019. https://doi.org/10.4314/sajas.v48i6.17
Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. 2018. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 61: 41-49. https://doi.org/10.1016/j.mam.2018.01.001
Rodríguez-Romero N., Abecia L., Fondevila M. 2013. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels. Anaerobe, 20: 50-57. https://doi.org/10.1016/j.anaerobe.2013.02.001
Russell J.B., Wilson D.B. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci., 79: 1503-
https://doi.org/10.3168/jds.S0022-0302(96)76510-4
Salanitro J.P., Muirhead P.A., Goodman J.R. 1976. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol., 32: 623-632. https://aem.asm.org/content/32/4/623.short. Accessed: May 2019.
Sanz Y., Santacruz A., Gauffin P. 2010. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc., 69: 434-441. https://doi.org/10.1017/S0029665110001813
Simmering R., Pforte H., Jacobasch G., Blaut M. 2002. The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids in vivo. FEMS Microbiol. Ecol., 40: 243-248. https://doi.org/10.1111/j.1574-6941.2002.tb00957.x
Sirotek K., Marounek M., Rada V., Benda V. 2001. Isolation and characterization of rabbit caecal pectinolytic bacteria. Folia Microbiol., 46: 79-82. https://doi.org/10.1007/BF02825893
Steelman S.M., Chowdhary B.P., Dowd S., Suchodolski J., Janečka J.E. 2012. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res., 8: 231. https://doi.org/10.1186/1746-6148-8-231
Tilbrook A.J., Turner A.I., Clarke I.J. 2000. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev. Reprod., 5: 105-113. https://doi.org/10.1530/ror.0.0050105
Vasantha Rupasinghe H.P., Wang L., Huber G.M., Pitts N.L. 2008. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem., 107: 1217-1224. https://doi.org/10.1016/j.foodchem.2007.09.057
Yen P.M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 81: 1097-1142. https://doi.org/10.1152/physrev.2001.81.3.1097
Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784. https://doi.org/10.1139/cjm-2015-0201
[-]