- -

Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author North, M. es_ES
dc.contributor.author Dalle Zotte, A. es_ES
dc.contributor.author Hoffman, L. es_ES
dc.date.accessioned 2020-02-27T11:22:58Z
dc.date.available 2020-02-27T11:22:58Z
dc.date.issued 2019-12-23
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/137911
dc.description.abstract [EN] The purpose of this study was to add to the current understanding of rabbit caecal microbiota. This involved describing its microbial composition and linking this to live performance parameters, as well as determining the effects of dietary quercetin (Qrc) supplementation (2 g/kg feed) and sex on the microbial population. The weight gain and feed conversion ratio of twelve New Zealand White rabbits was measured from 5 to 12 wk old, blood was sampled at 11 wk old for the determination of serum hormone levels, and the rabbits were slaughtered and caecal samples collected at 13 wk old. Ion 16STM metagenome sequencing was used to determine the microbiota profile. The dominance of Firmicutes (72.01±1.14% of mapped reads), Lachnospiraceae (23.94±1.01%) and Ruminococcaceae (19.71±1.07%) concurred with previous reports, but variation both between studies and individual rabbits was apparent beyond this. Significant correlations between microbial families and live performance parameters were fou es_ES
dc.description.sponsorship This research was supported by the South African Research Chairs Initiative (SARChI) and partly funded by the South African Department of Science and Technology (UID number: 84633), as administered by the National Research Foundation (NRF) of South Africa, and partly by the Department of Trade and Industry’s THRIP programme (THRIP/64/19/04/2017) with Wildlife Ranching South Africa as partner. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and the NRF accepts no liability in this regard. Personal funding for M. K. North was also provided by the NRF, in the form of a Scarce Skills Doctoral Scholarship (UID 102514). The contributions of Prof Martin Kidd, from the Centre for Statistical Consultation at Stellenbosch University, and Ms Alvera Vorster, Senior Analyst of the DNA Sequencing Unit of the Central Analytical Facility of Stellenbosch University, were invaluable. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flavonoid es_ES
dc.subject Growth es_ES
dc.subject Gut es_ES
dc.subject Microbiota es_ES
dc.subject Oryctolagus cuniculus es_ES
dc.subject Rabbit es_ES
dc.title Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2019.11905
dc.relation.projectID info:eu-repo/grantAgreement/NRF//THRIP%2F64%2F19%2F04%2F2017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation North, M.; Dalle Zotte, A.; Hoffman, L. (2019). Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Science. 27(4):185-198. https://doi.org/10.4995/wrs.2019.11905 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2019.11905 es_ES
dc.description.upvformatpinicio 185 es_ES
dc.description.upvformatpfin 198 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\11905 es_ES
dc.contributor.funder National Research Foundation, South Africa es_ES
dc.description.references Abecia L., Fondevila M., Balcells J., Edwards J.E., Newbold C.J., McEwan N.R. 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiol. Lett., 244: 111-115. https://doi.org/10.1016/j.femsle.2005.01.028 es_ES
dc.description.references Badiola I., de Rozas P., Gonzalez J., Aloy N., Carabaño R. 2016. Recent advances in ERE in growing rabbits. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 491-502. es_ES
dc.description.references Bäuerl C., Collado M.C., Zúñiga M., Blas E., Martínez G.P. 2014. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One, 9: e105707. https://doi.org/10.1371/journal.pone.0105707 es_ES
dc.description.references Biddle A., Stewart L., Blanchard J., Leschine S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity, 5: 627-640. https://doi.org/10.3390/d5030627 es_ES
dc.description.references Braune A., Gütschow M., Engst W., Blaut M. 2001. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol., 67: 5558-5567. https://doi.org/10.1128/AEM.67.12.5558-5567.2001 es_ES
dc.description.references Clench M.H., Mathias J.R. 1995. The avian cecum: A review. Wilson Bull., 107: 93-121. https://www.jstor.org/stable/4163516 es_ES
dc.description.references Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. 2013. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429-1439. https://doi.org/10.1017/S1751731113001079 es_ES
dc.description.references Cushnie T.P.T., Lamb A.J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002 es_ES
dc.description.references De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. 2016. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet. Res., 12: 1-9. https://doi.org/10.1186/s12917-016-0653-4 es_ES
dc.description.references De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W.B. 2009. Bergey's Manual of Systematic Bacteriology, Volume 3 - The Firmicutes, 2nd edition. Springer, New York, USA. es_ES
dc.description.references Duda-Chodak A. 2012. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol., 63(5): 497-503. es_ES
dc.description.references Espley R.V., Butts C.A., Laing W.A., Martell S., Smith H., McGhie T.K., Zhang J., Paturi G., Hedderley D., Bovy A., Schouten H.J., Putterill J., Allan A.C., Hellens R.P. 2014. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr., 144: 146-154. https://doi.org/10.3945/jn.113.182659 es_ES
dc.description.references Fan L., Zhao X., Tong Q., Zhou X., Chen J., Xiong W., Fang J., Wang W., Shi C. 2018. Interactions of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) with gut microbiota. J. Food Sci., 83: 1444-1453. https://doi.org/10.1111/1750-3841.14128 es_ES
dc.description.references García-Amado M.A., Godoy-Vitorino F., Piceno Y.M., Tom L.M., Andersen G.L., Herrera E.A., Domínguez-Bello M.G. 2012. Bacterial diversity in the cecum of the world's largest living rodent (Hydrochoerus hydrochaeris ). Microb. Ecol., 63: 719-725. https://doi.org/10.1007/s00248-011-9963-z es_ES
dc.description.references Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6: e17447. https://doi.org/10.1371/journal.pone.0017447 es_ES
dc.description.references Green M.R., McCormick C.M. 2016. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamicpituitary-adrenal axis in the rat. Gen. Comp. Endocrinol., 234: 110-116. https://doi.org/10.1016/j.ygcen.2016.02.004 es_ES
dc.description.references Gunn P.J., Middleton B., Davies S.K., Revell V.L., Skene D.J. 2016. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int., 33: 39-50. https://doi.org/10.3109/07420528.2015.1112396 es_ES
dc.description.references Herald T.J., Gadgil P., Tilley M. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric., 92: 2326-2331. https://doi.org/10.1002/jsfa.5633 es_ES
dc.description.references Huang J., Chen L., Xue B., Liu Q., Ou S., Wang Y., Peng X. 2016. Different flavonoids can shape unique gut microbiota profile in vitro. J. Food Sci., 81: H2273-H2279. https://doi.org/10.1111/1750-3841.13411 es_ES
dc.description.references Jami E., White B.A., Mizrahi I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9: e85423. https://doi.org/10.1371/journal.pone.0085423 es_ES
dc.description.references Kirschbaum C., Wüst S., Hellhammer D. 1992. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med., 54: 648-657. es_ES
dc.description.references Lee H.C., Jenner A.M., Low C.S., Lee Y.K. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 157: 876-884. https://doi.org/10.1016/j.resmic.2006.07.004 es_ES
dc.description.references Lin Y.T., Hsui S.L., Hou Y.C., Chen H.Y., Chao P.D.L. 2003. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora. Biol. Pharm. Bull., 26: 747-751. https://doi.org/10.1248/bpb.26.747 es_ES
dc.description.references Massip K., Combes S., Cauquil L., Zemb O., Gidenne T. 2012. High throughput 16S-DNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit: Impact of the hygiene of housing and of the intake level. In Proc.: 8th INRARRI Symposium on Gut Microbiology, 18-21 June, 2012. Clermont-Ferrand, France. 1: 57. es_ES
dc.description.references McBee R.H. 1971. Significance of intestinal microflora in herbivory. Annu. Rev. Ecol. Syst., 2: 165-176. https://doi.org/10.1146/annurev.es.02.110171.001121 es_ES
dc.description.references Michelland R.J., Combes S., Monteils V., Cauquil L., Gidenne T., Fortun-Lamothe L. 2010. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe, 16: 61-65. https://doi.org/10.1016/j.anaerobe.2009.05.002 es_ES
dc.description.references Monteils V., Cauquil L., Combes S., Godon J.-J., Gidenne T. 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol. Ecol., 66: 620-629. https://doi.org/10.1111/j.1574-6941.2008.00611.x es_ES
dc.description.references North M.K., Dalle Zotte A., Hoffman L.C. 2018. Effect of quercetin supplementation on the growth, feed efficiency and serum hormone levels of New Zealand White rabbits. S. Afr. J. Anim. Sci., 48: 1128-1139. https://www.ajol.info/index.php/sajas/article/view/183157. Accessed: May 2019. https://doi.org/10.4314/sajas.v48i6.17 es_ES
dc.description.references Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. 2018. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 61: 41-49. https://doi.org/10.1016/j.mam.2018.01.001 es_ES
dc.description.references Rodríguez-Romero N., Abecia L., Fondevila M. 2013. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels. Anaerobe, 20: 50-57. https://doi.org/10.1016/j.anaerobe.2013.02.001 es_ES
dc.description.references Russell J.B., Wilson D.B. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci., 79: 1503- es_ES
dc.description.references https://doi.org/10.3168/jds.S0022-0302(96)76510-4 es_ES
dc.description.references Salanitro J.P., Muirhead P.A., Goodman J.R. 1976. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol., 32: 623-632. https://aem.asm.org/content/32/4/623.short. Accessed: May 2019. es_ES
dc.description.references Sanz Y., Santacruz A., Gauffin P. 2010. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc., 69: 434-441. https://doi.org/10.1017/S0029665110001813 es_ES
dc.description.references Simmering R., Pforte H., Jacobasch G., Blaut M. 2002. The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids in vivo. FEMS Microbiol. Ecol., 40: 243-248. https://doi.org/10.1111/j.1574-6941.2002.tb00957.x es_ES
dc.description.references Sirotek K., Marounek M., Rada V., Benda V. 2001. Isolation and characterization of rabbit caecal pectinolytic bacteria. Folia Microbiol., 46: 79-82. https://doi.org/10.1007/BF02825893 es_ES
dc.description.references Steelman S.M., Chowdhary B.P., Dowd S., Suchodolski J., Janečka J.E. 2012. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res., 8: 231. https://doi.org/10.1186/1746-6148-8-231 es_ES
dc.description.references Tilbrook A.J., Turner A.I., Clarke I.J. 2000. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev. Reprod., 5: 105-113. https://doi.org/10.1530/ror.0.0050105 es_ES
dc.description.references Vasantha Rupasinghe H.P., Wang L., Huber G.M., Pitts N.L. 2008. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem., 107: 1217-1224. https://doi.org/10.1016/j.foodchem.2007.09.057 es_ES
dc.description.references Yen P.M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 81: 1097-1142. https://doi.org/10.1152/physrev.2001.81.3.1097 es_ES
dc.description.references Zhu Y., Wang C., Li F. 2015. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can. J. Microbiol., 61: 771-784. https://doi.org/10.1139/cjm-2015-0201 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem