- -

Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products

Mostrar el registro completo del ítem

Ibáñez-Sanchis, C.; Criscioni-Ferreira, PF.; Arriaga, H.; Merino, P.; Espinos Gutierrez, FJ.; Fernández Martínez, CJ. (2016). Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products. PLoS ONE. 11(3):1-21. https://doi.org/10.1371/journal.pone.0151215

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138014

Ficheros en el ítem

Metadatos del ítem

Título: Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products
Autor: Ibáñez-Sanchis, Carla Criscioni-Ferreira, Patricia Fabiola Arriaga, H. Merino, Pilar Espinos Gutierrez, Francisco Juan Fernández Martínez, Carlos Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[ES] El objetivo de este trabajo fue estudiar los efectos de la sustitución de grano de cebada en la dieta por pulpa de naranja o vainas de soja en el balance de nitrógeno y carbono, las emisiones de ...[+]


[EN] The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. ...[+]
Palabras clave: Murciano-Granadina , Metano , Nitrógeno y Carbono , Rendimiento , Intercambio gaseoso
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0151215
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pone.0151215
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//RTA2011-00107-C02-02/ES/Utilización de los carbohidratos de la dieta como indicadores técnicos de la producción de metano en rumiantes lecheros/
Agradecimientos:
This study was supported by the Spanish National Institute for Agronomic Research (RTA2011-00107-C02) and the European Regional Development Fund (ERDF).
Tipo: Artículo

References

Vasta, V., Nudda, A., Cannas, A., Lanza, M., & Priolo, A. (2008). Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology, 147(1-3), 223-246. doi:10.1016/j.anifeedsci.2007.09.020

Grasser, L. A., Fadel, J. G., Garnett, I., & Depeters, E. J. (1995). Quantity and Economic Importance of Nine Selected By-products Used in California Dairy Rations. Journal of Dairy Science, 78(4), 962-971. doi:10.3168/jds.s0022-0302(95)76711-x

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi:10.2527/1995.7382483x [+]
Vasta, V., Nudda, A., Cannas, A., Lanza, M., & Priolo, A. (2008). Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology, 147(1-3), 223-246. doi:10.1016/j.anifeedsci.2007.09.020

Grasser, L. A., Fadel, J. G., Garnett, I., & Depeters, E. J. (1995). Quantity and Economic Importance of Nine Selected By-products Used in California Dairy Rations. Journal of Dairy Science, 78(4), 962-971. doi:10.3168/jds.s0022-0302(95)76711-x

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi:10.2527/1995.7382483x

Hellwing, A. L. F., Weisbjerg, M. R., & Møller, H. B. (2014). Enteric and manure-derived methane emissions and biogas yield of slurry from dairy cows fed grass silage or maize silage with and without supplementation of rapeseed. Livestock Science, 165, 189-199. doi:10.1016/j.livsci.2014.04.011

González-Avalos, E. (2001). Methane emission factors from cattle manure in Mexico. Bioresource Technology, 80(1), 63-71. doi:10.1016/s0960-8524(01)00052-9

Fernández, C., López, M. C., & Lachica, M. (2012). Description and function of a mobile open-circuit respirometry system to measure gas exchange in small ruminants. Animal Feed Science and Technology, 172(3-4), 242-246. doi:10.1016/j.anifeedsci.2012.01.006

FERNÁNDEZ, C., LÓPEZ, M. C., & LACHICA, M. (2015). Low-cost mobile open-circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. The Journal of Agricultural Science, 153(7), 1302-1309. doi:10.1017/s0021859615000416

Brockway, J. M., Boyne, A. W., & Gordon, J. G. (1971). Simultaneous calibration of gas analyzers and meters. Journal of Applied Physiology, 31(2), 296-297. doi:10.1152/jappl.1971.31.2.296

Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043

Godbout, S., Verma, M., Larouche, J. P., Potvin, L., Chapman, A. M., Lemay, S. P., … Brar, S. K. (2010). Methane production potential (B0) of swine and cattle manures – A Canadian perspective. Environmental Technology, 31(12), 1371-1379. doi:10.1080/09593331003743096

Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407

O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491

Brouwer E (1965) Report of sub-committee on constants and factors. In: Blaxter KL (Ed.), Pages 441–443 in Proc. of the 3<sup>th</sup> Symposium on Energy Metabolism. EAAP. Publ. 11. Academic Press, London.

Brouwer E (1958) On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat metabolized in ruminants, from data on gaseous exchange and urine N. Pages 182–194 in Proc. 1<sup>th</sup> Symposium on Energy Metabolism. EAAP. Publ. 8. Academic Press, London.

Chwalibog, A., Tauson, A.-H., & Thorbek, G. (1997). Quantitative oxidation of nutrients in growing calves. Zeitschrift für Ernährungswissenschaft, 36(4), 313-316. doi:10.1007/bf01617806

Casper, D. P., Maiga, H. A., Brouk, M. J., & Schingoethe, D. J. (1999). Synchronization of Carbohydrate and Protein Sources on Fermentation and Passage Rates in Dairy Cows,,. Journal of Dairy Science, 82(8), 1779-1790. doi:10.3168/jds.s0022-0302(99)75408-1

Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104

Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315

Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4

López, M. C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. Journal of Dairy Science, 96(7), 4542-4552. doi:10.3168/jds.2012-6473

Palmquist, D. L., & Jenkins, T. C. (1980). Fat in Lactation Rations : Review. Journal of Dairy Science, 63(1), 1-14. doi:10.3168/jds.s0022-0302(80)82881-5

Kebreab E, Strathe AB, Dijkstra J, Mills JAN, Reynolds CK, Crompton LA, et al. (2010) Energy and protein interactions and their effects on nitrogen excretion in dairy cows. Pages 417–426 in Symp. on Energy and Protein Metabolism and Nutrition, Parma, Italy.

Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003). A Review of Nutritional and Physiological Factors Affecting Goat Milk Lipid Synthesis and Lipolysis. Journal of Dairy Science, 86(5), 1751-1770. doi:10.3168/jds.s0022-0302(03)73761-8

Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 131(3-4), 389-417. doi:10.1016/j.anifeedsci.2006.06.017

Fievez, V., Colman, E., Castro-Montoya, J. M., Stefanov, I., & Vlaeminck, B. (2012). Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Animal Feed Science and Technology, 172(1-2), 51-65. doi:10.1016/j.anifeedsci.2011.12.008

Vlaeminck, B., Gervais, R., Rahman, M. M., Gadeyne, F., Gorniak, M., Doreau, M., & Fievez, V. (2015). Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk. Journal of Dairy Science, 98(7), 4829-4840. doi:10.3168/jds.2014-9207

Jorjong, S., van Knegsel, A. T. M., Verwaeren, J., Bruckmaier, R. M., De Baets, B., Kemp, B., & Fievez, V. (2015). Milk fatty acids as possible biomarkers to diagnose hyperketonemia in early lactation. Journal of Dairy Science, 98(8), 5211-5221. doi:10.3168/jds.2014-8728

Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. doi:10.1016/0140-6736(91)91846-m

Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. doi:10.3168/jds.2013-7234

Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3

Velthof, G. L., Nelemans, J. A., Oenema, O., & Kuikman, P. J. (2005). Gaseous Nitrogen and Carbon Losses from Pig Manure Derived from Different Diets. Journal of Environmental Quality, 34(2), 698-706. doi:10.2134/jeq2005.0698

Jarret, G., Cozannet, P., Martinez, J., & Dourmad, J. Y. (2011). Effect of different quality wheat dried distiller’s grain solubles (DDGS) in pig diets on composition of excreta and methane production from faeces and slurry. Livestock Science, 140(1-3), 275-282. doi:10.1016/j.livsci.2011.04.006

Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026

Klevenhusen, F., Kreuzer, M., & Soliva, C. R. (2010). Enteric and manure-derived methane and nitrogen emissions as well as metabolic energy losses in cows fed balanced diets based on maize, barley or grass hay. animal, 5(03), 450-461. doi:10.1017/s1751731110001795

SPEK, J. W., DIJKSTRA, J., VAN DUINKERKEN, G., & BANNINK, A. (2012). A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. The Journal of Agricultural Science, 151(3), 407-423. doi:10.1017/s0021859612000561

Van Knegsel, A. T. M., van den Brand, H., Dijkstra, J., van Straalen, W. M., Heetkamp, M. J. W., Tamminga, S., & Kemp, B. (2007). Dietary Energy Source in Dairy Cows in Early Lactation: Energy Partitioning and Milk Composition. Journal of Dairy Science, 90(3), 1467-1476. doi:10.3168/jds.s0022-0302(07)71632-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem