- -

Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ibáñez-Sanchis, Carla es_ES
dc.contributor.author Criscioni-Ferreira, Patricia Fabiola es_ES
dc.contributor.author Arriaga, H. es_ES
dc.contributor.author Merino, Pilar es_ES
dc.contributor.author Espinos Gutierrez, Francisco Juan es_ES
dc.contributor.author Fernández Martínez, Carlos Javier es_ES
dc.date.accessioned 2020-02-29T21:00:14Z
dc.date.available 2020-02-29T21:00:14Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138014
dc.description.abstract [ES] El objetivo de este trabajo fue estudiar los efectos de la sustitución de grano de cebada en la dieta por pulpa de naranja o vainas de soja en el balance de nitrógeno y carbono, las emisiones de metano y el rendimiento de la producción de leche en cabras. Para ello, se seleccionaron doce cabras lecheras Murciano-Granadina y se dividieron en tres grupos basados en un peso corporal similar (42,1 ± 1,2 kg) y la producción de leche (2,16 ± 0,06 kg/cabra/día). El experimento se realizó en un diseño cruzado donde un grupo de cuatro cabras fue alimentado con una ración mixta de grano de cebada, en otro grupo de cuatro cabras se reemplazó el grano de cebada por pulpa de naranja y el último grupo de cuatro cabras se alimentó con soja. Después de la adaptación a las dietas, las cabras se establecieron en jaulas individuales y se analizaron las heces, la orina y la leche. Asimismo, las mediciones de intercambio gaseoso fueron registradas por un sistema móvil de calorimetría en circuito abierto. El consumo de materia seca fue similar en los tres grupos (2,03 kg/d, en promedio). No se observó ninguna influencia de la dieta en el balance energético. Las dietas basadas en pulpa de naranja y cascarilla de soja mostraron una mayor movilización de grasa que en el caso de grano de cebada. El ácido pentadecanoico y el ácido heptadecanoico fueron potenciales biomarcadores de la función del rumen debido a los contenidos más elevados encontrados en la leche de cabras con la dieta de pulpa de naranja y vainas de soja frente al detectado en las cabras con dieta de grano de cebada, lo que sugiere un impacto de estas dietas sobre el metabolismo bacteriano rumen. Esto probablemente esté relacionado con un suministro de nitrógeno inferior en el caso de la dieta de pulpa de naranja para sintetizar proteína microbiana y un mayor contenido de grasa en el caso de la dieta de cascarilla de soja. La sustitución de grano de cereal con subproductos fibrosos no aumentó las emisiones de metano (54,7 L/cabra por día, en promedio). Por lo tanto, se podría utilizar pulpa de naranja y cascarilla de soja en la dieta de las cabras lactantes sin tener un impacto negativo en el rendimiento de la producción de leche. es_ES
dc.description.abstract [EN] The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 +/- 1.2 kg) and milk yield (2.16 +/- 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15: 0) and heptadecanoic acid (17: 0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. es_ES
dc.description.sponsorship This study was supported by the Spanish National Institute for Agronomic Research (RTA2011-00107-C02) and the European Regional Development Fund (ERDF). es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Murciano-Granadina es_ES
dc.subject Metano es_ES
dc.subject Nitrógeno y Carbono es_ES
dc.subject Rendimiento es_ES
dc.subject Intercambio gaseoso es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0151215 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2011-00107-C02-02/ES/Utilización de los carbohidratos de la dieta como indicadores técnicos de la producción de metano en rumiantes lecheros/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Ibáñez-Sanchis, C.; Criscioni-Ferreira, PF.; Arriaga, H.; Merino, P.; Espinos Gutierrez, FJ.; Fernández Martínez, CJ. (2016). Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products. PLoS ONE. 11(3):1-21. https://doi.org/10.1371/journal.pone.0151215 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0151215 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\303543 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Vasta, V., Nudda, A., Cannas, A., Lanza, M., & Priolo, A. (2008). Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology, 147(1-3), 223-246. doi:10.1016/j.anifeedsci.2007.09.020 es_ES
dc.description.references Grasser, L. A., Fadel, J. G., Garnett, I., & Depeters, E. J. (1995). Quantity and Economic Importance of Nine Selected By-products Used in California Dairy Rations. Journal of Dairy Science, 78(4), 962-971. doi:10.3168/jds.s0022-0302(95)76711-x es_ES
dc.description.references Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi:10.2527/1995.7382483x es_ES
dc.description.references Hellwing, A. L. F., Weisbjerg, M. R., & Møller, H. B. (2014). Enteric and manure-derived methane emissions and biogas yield of slurry from dairy cows fed grass silage or maize silage with and without supplementation of rapeseed. Livestock Science, 165, 189-199. doi:10.1016/j.livsci.2014.04.011 es_ES
dc.description.references González-Avalos, E. (2001). Methane emission factors from cattle manure in Mexico. Bioresource Technology, 80(1), 63-71. doi:10.1016/s0960-8524(01)00052-9 es_ES
dc.description.references Fernández, C., López, M. C., & Lachica, M. (2012). Description and function of a mobile open-circuit respirometry system to measure gas exchange in small ruminants. Animal Feed Science and Technology, 172(3-4), 242-246. doi:10.1016/j.anifeedsci.2012.01.006 es_ES
dc.description.references FERNÁNDEZ, C., LÓPEZ, M. C., & LACHICA, M. (2015). Low-cost mobile open-circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. The Journal of Agricultural Science, 153(7), 1302-1309. doi:10.1017/s0021859615000416 es_ES
dc.description.references Brockway, J. M., Boyne, A. W., & Gordon, J. G. (1971). Simultaneous calibration of gas analyzers and meters. Journal of Applied Physiology, 31(2), 296-297. doi:10.1152/jappl.1971.31.2.296 es_ES
dc.description.references Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043 es_ES
dc.description.references Godbout, S., Verma, M., Larouche, J. P., Potvin, L., Chapman, A. M., Lemay, S. P., … Brar, S. K. (2010). Methane production potential (B0) of swine and cattle manures – A Canadian perspective. Environmental Technology, 31(12), 1371-1379. doi:10.1080/09593331003743096 es_ES
dc.description.references Batey, I. L. (1982). Starch Analysis Using Thermostable alpha-Amylases. Starch - Stärke, 34(4), 125-128. doi:10.1002/star.19820340407 es_ES
dc.description.references O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491 es_ES
dc.description.references Brouwer E (1965) Report of sub-committee on constants and factors. In: Blaxter KL (Ed.), Pages 441–443 in Proc. of the 3<sup>th</sup> Symposium on Energy Metabolism. EAAP. Publ. 11. Academic Press, London. es_ES
dc.description.references Brouwer E (1958) On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat metabolized in ruminants, from data on gaseous exchange and urine N. Pages 182–194 in Proc. 1<sup>th</sup> Symposium on Energy Metabolism. EAAP. Publ. 8. Academic Press, London. es_ES
dc.description.references Chwalibog, A., Tauson, A.-H., & Thorbek, G. (1997). Quantitative oxidation of nutrients in growing calves. Zeitschrift für Ernährungswissenschaft, 36(4), 313-316. doi:10.1007/bf01617806 es_ES
dc.description.references Casper, D. P., Maiga, H. A., Brouk, M. J., & Schingoethe, D. J. (1999). Synchronization of Carbohydrate and Protein Sources on Fermentation and Passage Rates in Dairy Cows,,. Journal of Dairy Science, 82(8), 1779-1790. doi:10.3168/jds.s0022-0302(99)75408-1 es_ES
dc.description.references Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104 es_ES
dc.description.references Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315 es_ES
dc.description.references Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4 es_ES
dc.description.references López, M. C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. Journal of Dairy Science, 96(7), 4542-4552. doi:10.3168/jds.2012-6473 es_ES
dc.description.references Palmquist, D. L., & Jenkins, T. C. (1980). Fat in Lactation Rations : Review. Journal of Dairy Science, 63(1), 1-14. doi:10.3168/jds.s0022-0302(80)82881-5 es_ES
dc.description.references Kebreab E, Strathe AB, Dijkstra J, Mills JAN, Reynolds CK, Crompton LA, et al. (2010) Energy and protein interactions and their effects on nitrogen excretion in dairy cows. Pages 417–426 in Symp. on Energy and Protein Metabolism and Nutrition, Parma, Italy. es_ES
dc.description.references Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003). A Review of Nutritional and Physiological Factors Affecting Goat Milk Lipid Synthesis and Lipolysis. Journal of Dairy Science, 86(5), 1751-1770. doi:10.3168/jds.s0022-0302(03)73761-8 es_ES
dc.description.references Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 131(3-4), 389-417. doi:10.1016/j.anifeedsci.2006.06.017 es_ES
dc.description.references Fievez, V., Colman, E., Castro-Montoya, J. M., Stefanov, I., & Vlaeminck, B. (2012). Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Animal Feed Science and Technology, 172(1-2), 51-65. doi:10.1016/j.anifeedsci.2011.12.008 es_ES
dc.description.references Vlaeminck, B., Gervais, R., Rahman, M. M., Gadeyne, F., Gorniak, M., Doreau, M., & Fievez, V. (2015). Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk. Journal of Dairy Science, 98(7), 4829-4840. doi:10.3168/jds.2014-9207 es_ES
dc.description.references Jorjong, S., van Knegsel, A. T. M., Verwaeren, J., Bruckmaier, R. M., De Baets, B., Kemp, B., & Fievez, V. (2015). Milk fatty acids as possible biomarkers to diagnose hyperketonemia in early lactation. Journal of Dairy Science, 98(8), 5211-5221. doi:10.3168/jds.2014-8728 es_ES
dc.description.references Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. doi:10.1016/0140-6736(91)91846-m es_ES
dc.description.references Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. doi:10.3168/jds.2013-7234 es_ES
dc.description.references Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3 es_ES
dc.description.references Velthof, G. L., Nelemans, J. A., Oenema, O., & Kuikman, P. J. (2005). Gaseous Nitrogen and Carbon Losses from Pig Manure Derived from Different Diets. Journal of Environmental Quality, 34(2), 698-706. doi:10.2134/jeq2005.0698 es_ES
dc.description.references Jarret, G., Cozannet, P., Martinez, J., & Dourmad, J. Y. (2011). Effect of different quality wheat dried distiller’s grain solubles (DDGS) in pig diets on composition of excreta and methane production from faeces and slurry. Livestock Science, 140(1-3), 275-282. doi:10.1016/j.livsci.2011.04.006 es_ES
dc.description.references Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026 es_ES
dc.description.references Klevenhusen, F., Kreuzer, M., & Soliva, C. R. (2010). Enteric and manure-derived methane and nitrogen emissions as well as metabolic energy losses in cows fed balanced diets based on maize, barley or grass hay. animal, 5(03), 450-461. doi:10.1017/s1751731110001795 es_ES
dc.description.references SPEK, J. W., DIJKSTRA, J., VAN DUINKERKEN, G., & BANNINK, A. (2012). A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. The Journal of Agricultural Science, 151(3), 407-423. doi:10.1017/s0021859612000561 es_ES
dc.description.references Van Knegsel, A. T. M., van den Brand, H., Dijkstra, J., van Straalen, W. M., Heetkamp, M. J. W., Tamminga, S., & Kemp, B. (2007). Dietary Energy Source in Dairy Cows in Early Lactation: Energy Partitioning and Milk Composition. Journal of Dairy Science, 90(3), 1467-1476. doi:10.3168/jds.s0022-0302(07)71632-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem