- -

Feasibility Study of a Facility to Produce Injection Molded Parts for Automotive Industry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Feasibility Study of a Facility to Produce Injection Molded Parts for Automotive Industry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yudianto, A. es_ES
dc.contributor.author Tan, H. es_ES
dc.contributor.author Qu, Z. es_ES
dc.contributor.author Xue, Q. es_ES
dc.contributor.author Naveen, A.C es_ES
dc.contributor.author Mushtaq, M. es_ES
dc.contributor.author Gopi, K.S. es_ES
dc.date.accessioned 2020-03-03T08:07:10Z
dc.date.available 2020-03-03T08:07:10Z
dc.date.issued 2020-01-31
dc.identifier.uri http://hdl.handle.net/10251/138134
dc.description.abstract [EN] This study aims at the preliminary assessment in designing a complete stand-alone industrial facility to produce injection molded parts for the automotive industry. A draft design solution to allow the company to evaluate the capital investment was performed giving an estimated solution in project profitability. Proposed successive design steps were developed. It includes the definition of input data and information, quantity determination, plat layout diagrams, machine selection, selection of material handling equipment, plant layout design including space requirements of production centers, aísles, support functions. Moreover, the outdoor facility masterplan design is also proposed. Finally, investment calculation via cash flow analysis is calculated. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Feasibility study es_ES
dc.subject Facility design es_ES
dc.subject Layout design es_ES
dc.subject Plant layout design es_ES
dc.title Feasibility Study of a Facility to Produce Injection Molded Parts for Automotive Industry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2020.12360
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yudianto, A.; Tan, H.; Qu, Z.; Xue, Q.; Naveen, A.; Mushtaq, M.; Gopi, K. (2020). Feasibility Study of a Facility to Produce Injection Molded Parts for Automotive Industry. International Journal of Production Management and Engineering. 8(1):45-57. https://doi.org/10.4995/ijpme.2020.12360 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2020.12360 es_ES
dc.description.upvformatpinicio 45 es_ES
dc.description.upvformatpfin 57 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\12360 es_ES
dc.description.references Al-Aomar, R. (2006). Capacity-constrained production scheduling of multiple vehicle programs in automotive pilot plant. International Journal of Production Research, 44(13), 2573-2604. https://doi.org/10.1080/00207540500521212 es_ES
dc.description.references Cagliano, A. C., Chiabert, P. (2018). Plant and manufacturing system lecture notes. Politecnico di Torino, Italy. es_ES
dc.description.references Chingua, S. Nyemba, W. R., Boora, K., Mbohwa, C. (2019). Feasibility study of the materials handling and development of a sustainable conveying system in plastics recycling and manufacture. Procedia Manufacturing, 33, 383-390. https://doi.org/10.1016/j.promfg.2019.04.047 es_ES
dc.description.references Derhami, S., Smith, J. S., Gue, K. R. (2019). Space-efficient layouts for block stacking warehouse. IISE Transaction, 51(9), 957-971. https://doi.org/10.1080/24725854.2018.1539280 es_ES
dc.description.references Eksangsri, T., Jaiwang, T. (2014). Feasibility study on reuse of washed water in electronic industry: case study for flexible printed circuit board manufacturing in Thailand. Procedia Environmental Sciences, 20, 206-214. https://doi.org/10.1016/j.proenv.2014.03.027 es_ES
dc.description.references Fu, M., Kaku, B. K. (1997). Minimizing work-in-process and material handling in the facilities layout problem. IIE Transactions, 29, 29-36. https://doi.org/10.1080/07408179708966309 es_ES
dc.description.references Halil, F. M., Nasir, N. M., Hassan, A. A., Shukur, A. S. (2016). Feasibility study and economic assessment in green building projects. Procedia-Social and Behavioral Sciences, 222, 56-64. https://doi.org/10.1016/j.sbspro.2016.05.176 es_ES
dc.description.references Hazaras, M. J., Swartz, C. L. E., Marlin, T. E. (2013). Industrial application of a continuous-time scheduling framework for process analysis and improvement. I&EC research Industrial & Engineering Chemistry Research, 53, 259-273. https://doi.org/10.1021/ie4006904 es_ES
dc.description.references Hwang, D. K., Cho, K., Moon, J. (2019). Feasibility study on energy audit and data driven analysis procedure for building energy efficiency: bench-marking in Korean hospital buildings. Journal Energy 12(15), 3006. https://doi.org/10.3390/en12153006 es_ES
dc.description.references Jung, S., Ng, D., Ovalle, C. D., Roman, R, V., Mannan, M. S. (2011). New approach to optimizing the facility sitting and layout for fire and explosion scenarios. I&EC research Industrial & Engineering Chemistry Research, 50, 3928-3937. https://doi.org/10.1021/ie101367g es_ES
dc.description.references Kingenberg, W., Boksma, J. D. (2010). A conceptual framework for outsourcing of material handling activities in automotive: differentiation and implementation. International Journal of Production Research, 48(16), 4877-4899. https://doi.org/10.1080/00207540903067177 es_ES
dc.description.references Kovàcs, G. (2019). Layout design for efficiency improvement and cost reduction. Bull. Pol. Ac.: Tech., 67(3), 547-555. https://doi.org/10.24425%2Fbpasts.2019.129653 es_ES
dc.description.references Ma, T., Yang, H., Lu. L., Qi, R. (2017). Feasibility study of developing a zero-carbon-emission green deck in Hong Kong. Energy Procedia 105, 1155-1159. https://doi.org/10.1016/j.egypro.2017.03.487 es_ES
dc.description.references Morgan, B., Hejdenberg, J., Krapels, S. H., Amstrong, D. (2018). DO feasibility studies contribute to, or avoid, waste in research? PLos ONE 13(4), e0195951. https://doi.org/10.1371/journal.pone.0195951 es_ES
dc.description.references Pòvoa, A. P. B., (2002). Optimal design and layout of industrial facilities: a simultaneous approach. Ind. Eng. Chem. Res, 41, 3601-3609. https://doi.org/10.1021/ie010660s es_ES
dc.description.references Schaller, J. (2008). Incorporating cellular manufacturing into supply chain design. International Journal of Production Research, 46(17), 4925-4945. https://doi.org/10.1080/00207540701348761 es_ES
dc.description.references Stephens, M. P., Meyers, F. E., (2013). Manufacturing facilities design and material handling - fifth edition. Purdue University Press, West Lafayette, Indiana. es_ES
dc.description.references Sun, L., Luan, F., Pian, J. (2015). An effective approach for scheduling of refining process with uncertain iterations in steel-making and continuous casting process. IFAC-PapersOnLine, 48(3), 1966-1972. https://doi.org/10.1016/j.ifacol.2015.06.376 es_ES
dc.description.references Yang, Z., Djurdjanovic, D., Ni, J. (2007). Maintenance scheduling for a manufacturing system of machines with adjustable throughput. IIE Transactions, 39, 1111-1125. https://doi.org/10.1080/07408170701315339 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem