- -

Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing

Mostrar el registro completo del ítem

Pérez-López, S.; Candelas Valiente, P.; Fuster Escuder, JM.; Rubio Michavila, C.; Minin, OV.; Minin, IV. (2019). Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing. Applied Physics Express. 12(8):087001-1-087001-5. https://doi.org/10.7567/1882-0786/ab2c7a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138364

Ficheros en el ítem

Metadatos del ítem

Título: Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing
Autor: Pérez-López, Sergio Candelas Valiente, Pilar Fuster Escuder, José Miguel Rubio Michavila, Constanza Minin, Oleg V. Minin, Igor V.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] In this work, we present a lens based on a thin hollow ABS spherical container structure, which can be filled up with different compatible liquids. The acoustic jet can be dynamically shaped by either shifting the ...[+]
Palabras clave: Acoustic Lens , Spherical Lens , Acoustic Jet
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Express. (issn: 1882-0778 )
DOI: 10.7567/1882-0786/ab2c7a
Editorial:
Japan Society of Applied Physics
Versión del editor: https://doi.org/10.7567/1882-0786/ab2c7a
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/
Descripción: El copyright pertenece a JSAP.
Agradecimientos:
This work has been supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politècnica de València grant program PAID-01-18. I.V.M. ...[+]
Tipo: Artículo

References

Meng, Q., Zhang, X., Cheng, L., Cao, P., Li, Y., Zhang, H., & Wang, G. (2011). Deep subwavelength focusing of light by a trumpet hyperlens. Journal of Optics, 13(7), 075102. doi:10.1088/2040-8978/13/7/075102

Papaioannou, M., Plum, E., Rogers, E. T., & Zheludev, N. I. (2017). All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light: Science & Applications, 7(3), 17157-17157. doi:10.1038/lsa.2017.157

Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099 [+]
Meng, Q., Zhang, X., Cheng, L., Cao, P., Li, Y., Zhang, H., & Wang, G. (2011). Deep subwavelength focusing of light by a trumpet hyperlens. Journal of Optics, 13(7), 075102. doi:10.1088/2040-8978/13/7/075102

Papaioannou, M., Plum, E., Rogers, E. T., & Zheludev, N. I. (2017). All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light: Science & Applications, 7(3), 17157-17157. doi:10.1038/lsa.2017.157

Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099

Ding, T., Yi, J., Li, H., Zhang, H., & Burokur, S. N. (2017). 3D field-shaping lens using all-dielectric gradient refractive index materials. Scientific Reports, 7(1). doi:10.1038/s41598-017-00681-z

Jiménez, N., Romero-García, V., Picó, R., Garcia-Raffi, L. M., & Staliunas, K. (2015). Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water. Applied Physics Letters, 107(20), 204103. doi:10.1063/1.4935917

Hooke, R., Allestry, J., & Martyn, J. (1665). Micrographia, or, Some physiological descriptions of minute bodies made by magnifying glasses : with observations and inquiries thereupon /. doi:10.5962/bhl.title.105738

Thomas, D. C., Gee, K. L., & Turley, R. S. (2009). A balloon lens: Acoustic scattering from a penetrable sphere. American Journal of Physics, 77(3), 197-203. doi:10.1119/1.3041420

Knollman, G. C., Bellin, J. L. S., & Weaver, J. L. (1971). Variable‐Focus Liquid‐Filled Hydroacoustic Lens. The Journal of the Acoustical Society of America, 49(1B), 253-261. doi:10.1121/1.1912324

Hasheminejad, S. M., & Azarpeyvand, M. (2004). Sound radiation from a liquid-filled underwater spherical acoustic lens with an internal eccentric baffled spherical piston. Ocean Engineering, 31(8-9), 1129-1146. doi:10.1016/j.oceaneng.2003.10.010

Liu, T., Chen, F., Liang, S., Gao, H., & Zhu, J. (2019). Subwavelength Sound Focusing and Imaging Via Gradient Metasurface-Enabled Spoof Surface Acoustic Wave Modulation. Physical Review Applied, 11(3). doi:10.1103/physrevapplied.11.034061

Ma, F., Chen, J., & Wu, J. H. (2019). Three-dimensional acoustic sub-diffraction focusing by coiled metamaterials with strong absorption. Journal of Materials Chemistry C, 7(17), 5131-5138. doi:10.1039/c9tc01243e

Rugar, D. (1984). Resolution beyond the diffraction limit in the acoustic microscope: A nonlinear effect. Journal of Applied Physics, 56(5), 1338-1346. doi:10.1063/1.334124

De Rosny, J., & Fink, M. (2002). Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink. Physical Review Letters, 89(12). doi:10.1103/physrevlett.89.124301

Sarvazyan, A., Fillinger, L., & Gavrilov, L. R. (2010). Time-reversal acoustic focusing system as a virtual random phased array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(4), 812-817. doi:10.1109/tuffc.2010.1486

Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic Nanojets. Journal of Computational and Theoretical Nanoscience, 6(9), 1979-1992. doi:10.1166/jctn.2009.1254

Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O., & Wang, Z. (2017). Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited]. Optical Materials Express, 7(6), 1820. doi:10.1364/ome.7.001820

Yue, L., Yan, B., Monks, J. N., Dhama, R., Wang, Z., Minin, O. V., & Minin, I. V. (2017). Intensity-Enhanced Apodization Effect on an Axially Illuminated Circular-Column Particle-Lens. Annalen der Physik, 530(2), 1700384. doi:10.1002/andp.201700384

Yue, L., Minin, O. V., Wang, Z., Monks, J. N., Shalin, A. S., & Minin, I. V. (2018). Photonic hook: a new curved light beam. Optics Letters, 43(4), 771. doi:10.1364/ol.43.000771

Minin, O. V., & Minin, I. V. (2017). Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Optical and Quantum Electronics, 49(2). doi:10.1007/s11082-017-0893-y

Lopes, J. H., Andrade, M. A. B., Leão-Neto, J. P., Adamowski, J. C., Minin, I. V., & Silva, G. T. (2017). Focusing Acoustic Beams with a Ball-Shaped Lens beyond the Diffraction Limit. Physical Review Applied, 8(2). doi:10.1103/physrevapplied.8.024013

Minin, I., & Minin, O. (2018). Mesoscale Acoustical Cylindrical Superlens. MATEC Web of Conferences, 155, 01029. doi:10.1051/matecconf/201815501029

Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712

Liu, C.-Y. (2014). Photonic nanojet shaping of dielectric non-spherical microparticles. Physica E: Low-dimensional Systems and Nanostructures, 64, 23-28. doi:10.1016/j.physe.2014.06.026

Li, D., Wang, X., Ling, J., & Yuan, H. (2018). Super-narrow focusing and ultra-long working distance by different shapes of dielectric microlenses. Optik, 160, 138-145. doi:10.1016/j.ijleo.2018.01.061

Zhou, Y., Tang, Y., He, Y., Liu, X., & Hu, S. (2018). Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging. Applied Physics Express, 11(3), 032501. doi:10.7567/apex.11.032501

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem