- -

Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Sergio es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.contributor.author Fuster Escuder, José Miguel es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.contributor.author Minin, Oleg V. es_ES
dc.contributor.author Minin, Igor V. es_ES
dc.date.accessioned 2020-03-05T07:53:18Z
dc.date.available 2020-03-05T07:53:18Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1882-0778 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138364
dc.description El copyright pertenece a JSAP. es_ES
dc.description.abstract [EN] In this work, we present a lens based on a thin hollow ABS spherical container structure, which can be filled up with different compatible liquids. The acoustic jet can be dynamically shaped by either shifting the operating frequency or modifying the geometry of the lens. We show for the first time that a spherical Ethanol ABS core¿shell acoustical lens immersed in water with low diameter-to-wavelength ratio equal to 6.67 and refraction index of 1.24 achieves a focusing spot narrower than 0.85¿. Experimental measurements validate simulation results and demonstrate the viability of these configurable spherical lenses in underwater acoustic focusing applications. es_ES
dc.description.sponsorship This work has been supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politècnica de València grant program PAID-01-18. I.V.M. and O.V.M. acknowledge the Tomsk Polytechnic University Competitiveness Enhancement Program.
dc.language Inglés es_ES
dc.publisher Japan Society of Applied Physics es_ES
dc.relation.ispartof Applied Physics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustic Lens es_ES
dc.subject Spherical Lens es_ES
dc.subject Acoustic Jet es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7567/1882-0786/ab2c7a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pérez-López, S.; Candelas Valiente, P.; Fuster Escuder, JM.; Rubio Michavila, C.; Minin, OV.; Minin, IV. (2019). Liquid-liquid core-shell configurable mesoscale spherical acoustic lens with subwavelength focusing. Applied Physics Express. 12(8):087001-1-087001-5. https://doi.org/10.7567/1882-0786/ab2c7a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.7567/1882-0786/ab2c7a es_ES
dc.description.upvformatpinicio 087001-1 es_ES
dc.description.upvformatpfin 087001-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\390902 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Meng, Q., Zhang, X., Cheng, L., Cao, P., Li, Y., Zhang, H., & Wang, G. (2011). Deep subwavelength focusing of light by a trumpet hyperlens. Journal of Optics, 13(7), 075102. doi:10.1088/2040-8978/13/7/075102 es_ES
dc.description.references Papaioannou, M., Plum, E., Rogers, E. T., & Zheludev, N. I. (2017). All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light: Science & Applications, 7(3), 17157-17157. doi:10.1038/lsa.2017.157 es_ES
dc.description.references Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099 es_ES
dc.description.references Ding, T., Yi, J., Li, H., Zhang, H., & Burokur, S. N. (2017). 3D field-shaping lens using all-dielectric gradient refractive index materials. Scientific Reports, 7(1). doi:10.1038/s41598-017-00681-z es_ES
dc.description.references Jiménez, N., Romero-García, V., Picó, R., Garcia-Raffi, L. M., & Staliunas, K. (2015). Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water. Applied Physics Letters, 107(20), 204103. doi:10.1063/1.4935917 es_ES
dc.description.references Hooke, R., Allestry, J., & Martyn, J. (1665). Micrographia, or, Some physiological descriptions of minute bodies made by magnifying glasses : with observations and inquiries thereupon /. doi:10.5962/bhl.title.105738 es_ES
dc.description.references Thomas, D. C., Gee, K. L., & Turley, R. S. (2009). A balloon lens: Acoustic scattering from a penetrable sphere. American Journal of Physics, 77(3), 197-203. doi:10.1119/1.3041420 es_ES
dc.description.references Knollman, G. C., Bellin, J. L. S., & Weaver, J. L. (1971). Variable‐Focus Liquid‐Filled Hydroacoustic Lens. The Journal of the Acoustical Society of America, 49(1B), 253-261. doi:10.1121/1.1912324 es_ES
dc.description.references Hasheminejad, S. M., & Azarpeyvand, M. (2004). Sound radiation from a liquid-filled underwater spherical acoustic lens with an internal eccentric baffled spherical piston. Ocean Engineering, 31(8-9), 1129-1146. doi:10.1016/j.oceaneng.2003.10.010 es_ES
dc.description.references Liu, T., Chen, F., Liang, S., Gao, H., & Zhu, J. (2019). Subwavelength Sound Focusing and Imaging Via Gradient Metasurface-Enabled Spoof Surface Acoustic Wave Modulation. Physical Review Applied, 11(3). doi:10.1103/physrevapplied.11.034061 es_ES
dc.description.references Ma, F., Chen, J., & Wu, J. H. (2019). Three-dimensional acoustic sub-diffraction focusing by coiled metamaterials with strong absorption. Journal of Materials Chemistry C, 7(17), 5131-5138. doi:10.1039/c9tc01243e es_ES
dc.description.references Rugar, D. (1984). Resolution beyond the diffraction limit in the acoustic microscope: A nonlinear effect. Journal of Applied Physics, 56(5), 1338-1346. doi:10.1063/1.334124 es_ES
dc.description.references De Rosny, J., & Fink, M. (2002). Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink. Physical Review Letters, 89(12). doi:10.1103/physrevlett.89.124301 es_ES
dc.description.references Sarvazyan, A., Fillinger, L., & Gavrilov, L. R. (2010). Time-reversal acoustic focusing system as a virtual random phased array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(4), 812-817. doi:10.1109/tuffc.2010.1486 es_ES
dc.description.references Heifetz, A., Kong, S.-C., Sahakian, A. V., Taflove, A., & Backman, V. (2009). Photonic Nanojets. Journal of Computational and Theoretical Nanoscience, 6(9), 1979-1992. doi:10.1166/jctn.2009.1254 es_ES
dc.description.references Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O., & Wang, Z. (2017). Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited]. Optical Materials Express, 7(6), 1820. doi:10.1364/ome.7.001820 es_ES
dc.description.references Yue, L., Yan, B., Monks, J. N., Dhama, R., Wang, Z., Minin, O. V., & Minin, I. V. (2017). Intensity-Enhanced Apodization Effect on an Axially Illuminated Circular-Column Particle-Lens. Annalen der Physik, 530(2), 1700384. doi:10.1002/andp.201700384 es_ES
dc.description.references Yue, L., Minin, O. V., Wang, Z., Monks, J. N., Shalin, A. S., & Minin, I. V. (2018). Photonic hook: a new curved light beam. Optics Letters, 43(4), 771. doi:10.1364/ol.43.000771 es_ES
dc.description.references Minin, O. V., & Minin, I. V. (2017). Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Optical and Quantum Electronics, 49(2). doi:10.1007/s11082-017-0893-y es_ES
dc.description.references Lopes, J. H., Andrade, M. A. B., Leão-Neto, J. P., Adamowski, J. C., Minin, I. V., & Silva, G. T. (2017). Focusing Acoustic Beams with a Ball-Shaped Lens beyond the Diffraction Limit. Physical Review Applied, 8(2). doi:10.1103/physrevapplied.8.024013 es_ES
dc.description.references Minin, I., & Minin, O. (2018). Mesoscale Acoustical Cylindrical Superlens. MATEC Web of Conferences, 155, 01029. doi:10.1051/matecconf/201815501029 es_ES
dc.description.references Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712 es_ES
dc.description.references Liu, C.-Y. (2014). Photonic nanojet shaping of dielectric non-spherical microparticles. Physica E: Low-dimensional Systems and Nanostructures, 64, 23-28. doi:10.1016/j.physe.2014.06.026 es_ES
dc.description.references Li, D., Wang, X., Ling, J., & Yuan, H. (2018). Super-narrow focusing and ultra-long working distance by different shapes of dielectric microlenses. Optik, 160, 138-145. doi:10.1016/j.ijleo.2018.01.061 es_ES
dc.description.references Zhou, Y., Tang, Y., He, Y., Liu, X., & Hu, S. (2018). Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging. Applied Physics Express, 11(3), 032501. doi:10.7567/apex.11.032501 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem