- -

Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Antoñanzas-Manuel, Christian es_ES
dc.contributor.author Ferrer Contreras, Miguel es_ES
dc.contributor.author Diego Antón, María de es_ES
dc.contributor.author Gonzalez, Alberto es_ES
dc.date.accessioned 2020-03-05T08:12:02Z
dc.date.available 2020-03-05T08:12:02Z
dc.date.issued 2017-12-05 es_ES
dc.identifier.issn 1530-8669 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138374
dc.description.abstract [EN] This paper considers the effect of effort constraints on the behavior of an active noise control (ANC) system over a distributed network composed of acoustic nodes. A distributed implementation can be desirable in order to provide more flexible, versatile, and scalable ANC systems. In this regard, the distributed version of the multiple error filtered-x least mean square (DMEFxLMS) algorithm that allows collaboration between nodes has shown excellent properties. However, practical constraints need to be considered since, in real scenarios, the acoustic nodes are equipped with power constrained actuators. If these constraints are not considered within the adaptive algorithm, the control signals may increase and saturate the hardware devices, causing system instability. To avoid this drawback, a control effort weighting can be considered in the cost function of the distributed algorithm at each node. Therefore, a control effort strategy over the output signals at each node is used to keep them under a given threshold and ensuring the distributed ANC system stability. Experimental results show that, assuming ideal network communications, the proposed distributed algorithm achieves the same performance as the leaky centralized ANC system. A performance evaluation of several versions of the leaky DMEFxLMS algorithm in realistic scenarios is also included. es_ES
dc.description.sponsorship This work has been supported by European Union ERDF together with Spanish Government through TEC2015-67387-C4-1-R project and Generalitat Valenciana through PROMETEOII/2014/003 project. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Wireless Communications and Mobile Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2017/3601802 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-063783/ES/BES-2013-063783/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Antoñanzas-Manuel, C.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2017). Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes. Wireless Communications and Mobile Computing. 2017:1-15. https://doi.org/10.1155/2017/3601802 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2017/3601802 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2017 es_ES
dc.relation.pasarela S\347991 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114. doi:10.1109/mcom.2002.1024422 es_ES
dc.description.references Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. doi:10.1016/j.comnet.2008.04.002 es_ES
dc.description.references Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19-31. doi:10.1109/mcas.2005.1507522 es_ES
dc.description.references Xiaojiang Du, & Hsiao-Hwa Chen. (2008). Security in wireless sensor networks. IEEE Wireless Communications, 15(4), 60-66. doi:10.1109/mwc.2008.4599222 es_ES
dc.description.references Al Ameen, M., Liu, J., & Kwak, K. (2010). Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. Journal of Medical Systems, 36(1), 93-101. doi:10.1007/s10916-010-9449-4 es_ES
dc.description.references Martinez, K., Hart, J. K., & Ong, R. (2004). Environmental sensor networks. Computer, 37(8), 50-56. doi:10.1109/mc.2004.91 es_ES
dc.description.references Segura-Garcia, J., Felici-Castell, S., Perez-Solano, J. J., Cobos, M., & Navarro, J. M. (2015). Low-Cost Alternatives for Urban Noise Nuisance Monitoring Using Wireless Sensor Networks. IEEE Sensors Journal, 15(2), 836-844. doi:10.1109/jsen.2014.2356342 es_ES
dc.description.references Flammini, A., Ferrari, P., Marioli, D., Sisinni, E., & Taroni, A. (2009). Wired and wireless sensor networks for industrial applications. Microelectronics Journal, 40(9), 1322-1336. doi:10.1016/j.mejo.2008.08.012 es_ES
dc.description.references Lopes, C. G., & Sayed, A. H. (2007). Incremental Adaptive Strategies Over Distributed Networks. IEEE Transactions on Signal Processing, 55(8), 4064-4077. doi:10.1109/tsp.2007.896034 es_ES
dc.description.references Cobos, M., Perez-Solano, J. J., Belmonte, O., Ramos, G., & Torres, A. M. (2016). Simultaneous Ranging and Self-Positioning in Unsynchronized Wireless Acoustic Sensor Networks. IEEE Transactions on Signal Processing, 64(22), 5993-6004. doi:10.1109/tsp.2016.2603972 es_ES
dc.description.references Llerena-Aguilar, C., Gil-Pita, R., Rosa-Zurera, M., Ayllón, D., Utrilla-Manso, M., & Llerena, F. (2016). Synchronization based on mixture alignment for sound source separation in wireless acoustic sensor networks. Signal Processing, 118, 177-187. doi:10.1016/j.sigpro.2015.06.023 es_ES
dc.description.references Elliott, S. J., & Nelson, P. A. (1993). Active noise control. IEEE Signal Processing Magazine, 10(4), 12-35. doi:10.1109/79.248551 es_ES
dc.description.references Elliott, S. J., Joseph, P., Bullmore, A. J., & Nelson, P. A. (1988). Active cancellation at a point in a pure tone diffuse sound field. Journal of Sound and Vibration, 120(1), 183-189. doi:10.1016/0022-460x(88)90343-4 es_ES
dc.description.references Joseph, P., Elliott, S. J., & Nelson, P. A. (1994). Near Field Zones of Quiet. Journal of Sound and Vibration, 172(5), 605-627. doi:10.1006/jsvi.1994.1202 es_ES
dc.description.references Kuo, S. M., & Morgan, D. R. (1999). Active noise control: a tutorial review. Proceedings of the IEEE, 87(6), 943-975. doi:10.1109/5.763310 es_ES
dc.description.references Burgess, J. C. (1981). Active adaptive sound control in a duct: A computer simulation. The Journal of the Acoustical Society of America, 70(3), 715-726. doi:10.1121/1.386908 es_ES
dc.description.references Elliott, S. J., & Boucher, C. C. (1994). Interaction between multiple feedforward active control systems. IEEE Transactions on Speech and Audio Processing, 2(4), 521-530. doi:10.1109/89.326611 es_ES
dc.description.references Grosdidier, P., & Morari, M. (1986). Interaction measures for systems under decentralized control. Automatica, 22(3), 309-319. doi:10.1016/0005-1098(86)90029-4 es_ES
dc.description.references Elliott, S., Stothers, I., & Nelson, P. (1987). A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(10), 1423-1434. doi:10.1109/tassp.1987.1165044 es_ES
dc.description.references Elliott, S. J., & Back, K. H. (1996). Effort constraints in adaptive feedforward control. IEEE Signal Processing Letters, 3(1), 7-9. doi:10.1109/97.475821 es_ES
dc.description.references Qiu, X., & Hansen, C. H. (2001). A study of time-domain FXLMS algorithms with control output constraint. The Journal of the Acoustical Society of America, 109(6), 2815-2823. doi:10.1121/1.1367247 es_ES
dc.description.references Rafaely, B., & Elliot, S. J. (2000). A computationally efficient frequency-domain LMS algorithm with constraints on the adaptive filter. IEEE Transactions on Signal Processing, 48(6), 1649-1655. doi:10.1109/78.845922 es_ES
dc.description.references Kozacky, W. J., & Ogunfunmi, T. (2013). An active noise control algorithm with gain and power constraints on the adaptive filter. EURASIP Journal on Advances in Signal Processing, 2013(1). doi:10.1186/1687-6180-2013-17 es_ES
dc.description.references Mosquera-Sánchez, J. A., Desmet, W., & de Oliveira, L. P. R. (2017). A multichannel amplitude and relative-phase controller for active sound quality control. Mechanical Systems and Signal Processing, 88, 145-165. doi:10.1016/j.ymssp.2016.10.036 es_ES
dc.description.references Rossetti, D. J., Jolly, M. R., & Southward, S. C. (1996). Control effort weighting in feedforward adaptive control systems. The Journal of the Acoustical Society of America, 99(5), 2955-2964. doi:10.1121/1.414877 es_ES
dc.description.references Antoñanzas, C., Ferrer, M., de Diego, M., & Gonzalez, A. (2016). Blockwise Frequency Domain Active Noise Controller Over Distributed Networks. Applied Sciences, 6(5), 124. doi:10.3390/app6050124 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem