- -

Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes

Mostrar el registro completo del ítem

Antoñanzas-Manuel, C.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2017). Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes. Wireless Communications and Mobile Computing. 2017:1-15. https://doi.org/10.1155/2017/3601802

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138374

Ficheros en el ítem

Metadatos del ítem

Título: Control Effort Strategies for Acoustically Coupled Distributed Acoustic Nodes
Autor: Antoñanzas-Manuel, Christian Ferrer Contreras, Miguel Diego Antón, María de Gonzalez, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] This paper considers the effect of effort constraints on the behavior of an active noise control (ANC) system over a distributed network composed of acoustic nodes. A distributed implementation can be desirable in ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Wireless Communications and Mobile Computing. (issn: 1530-8669 )
DOI: 10.1155/2017/3601802
Editorial:
John Wiley & Sons
Versión del editor: http://dx.doi.org/10.1155/2017/3601802
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2013-063783/ES/BES-2013-063783/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/
info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/
Agradecimientos:
This work has been supported by European Union ERDF together with Spanish Government through TEC2015-67387-C4-1-R project and Generalitat Valenciana through PROMETEOII/2014/003 project.
Tipo: Artículo

References

Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114. doi:10.1109/mcom.2002.1024422

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. doi:10.1016/j.comnet.2008.04.002

Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19-31. doi:10.1109/mcas.2005.1507522 [+]
Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102-114. doi:10.1109/mcom.2002.1024422

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. doi:10.1016/j.comnet.2008.04.002

Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19-31. doi:10.1109/mcas.2005.1507522

Xiaojiang Du, & Hsiao-Hwa Chen. (2008). Security in wireless sensor networks. IEEE Wireless Communications, 15(4), 60-66. doi:10.1109/mwc.2008.4599222

Al Ameen, M., Liu, J., & Kwak, K. (2010). Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. Journal of Medical Systems, 36(1), 93-101. doi:10.1007/s10916-010-9449-4

Martinez, K., Hart, J. K., & Ong, R. (2004). Environmental sensor networks. Computer, 37(8), 50-56. doi:10.1109/mc.2004.91

Segura-Garcia, J., Felici-Castell, S., Perez-Solano, J. J., Cobos, M., & Navarro, J. M. (2015). Low-Cost Alternatives for Urban Noise Nuisance Monitoring Using Wireless Sensor Networks. IEEE Sensors Journal, 15(2), 836-844. doi:10.1109/jsen.2014.2356342

Flammini, A., Ferrari, P., Marioli, D., Sisinni, E., & Taroni, A. (2009). Wired and wireless sensor networks for industrial applications. Microelectronics Journal, 40(9), 1322-1336. doi:10.1016/j.mejo.2008.08.012

Lopes, C. G., & Sayed, A. H. (2007). Incremental Adaptive Strategies Over Distributed Networks. IEEE Transactions on Signal Processing, 55(8), 4064-4077. doi:10.1109/tsp.2007.896034

Cobos, M., Perez-Solano, J. J., Belmonte, O., Ramos, G., & Torres, A. M. (2016). Simultaneous Ranging and Self-Positioning in Unsynchronized Wireless Acoustic Sensor Networks. IEEE Transactions on Signal Processing, 64(22), 5993-6004. doi:10.1109/tsp.2016.2603972

Llerena-Aguilar, C., Gil-Pita, R., Rosa-Zurera, M., Ayllón, D., Utrilla-Manso, M., & Llerena, F. (2016). Synchronization based on mixture alignment for sound source separation in wireless acoustic sensor networks. Signal Processing, 118, 177-187. doi:10.1016/j.sigpro.2015.06.023

Elliott, S. J., & Nelson, P. A. (1993). Active noise control. IEEE Signal Processing Magazine, 10(4), 12-35. doi:10.1109/79.248551

Elliott, S. J., Joseph, P., Bullmore, A. J., & Nelson, P. A. (1988). Active cancellation at a point in a pure tone diffuse sound field. Journal of Sound and Vibration, 120(1), 183-189. doi:10.1016/0022-460x(88)90343-4

Joseph, P., Elliott, S. J., & Nelson, P. A. (1994). Near Field Zones of Quiet. Journal of Sound and Vibration, 172(5), 605-627. doi:10.1006/jsvi.1994.1202

Kuo, S. M., & Morgan, D. R. (1999). Active noise control: a tutorial review. Proceedings of the IEEE, 87(6), 943-975. doi:10.1109/5.763310

Burgess, J. C. (1981). Active adaptive sound control in a duct: A computer simulation. The Journal of the Acoustical Society of America, 70(3), 715-726. doi:10.1121/1.386908

Elliott, S. J., & Boucher, C. C. (1994). Interaction between multiple feedforward active control systems. IEEE Transactions on Speech and Audio Processing, 2(4), 521-530. doi:10.1109/89.326611

Grosdidier, P., & Morari, M. (1986). Interaction measures for systems under decentralized control. Automatica, 22(3), 309-319. doi:10.1016/0005-1098(86)90029-4

Elliott, S., Stothers, I., & Nelson, P. (1987). A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(10), 1423-1434. doi:10.1109/tassp.1987.1165044

Elliott, S. J., & Back, K. H. (1996). Effort constraints in adaptive feedforward control. IEEE Signal Processing Letters, 3(1), 7-9. doi:10.1109/97.475821

Qiu, X., & Hansen, C. H. (2001). A study of time-domain FXLMS algorithms with control output constraint. The Journal of the Acoustical Society of America, 109(6), 2815-2823. doi:10.1121/1.1367247

Rafaely, B., & Elliot, S. J. (2000). A computationally efficient frequency-domain LMS algorithm with constraints on the adaptive filter. IEEE Transactions on Signal Processing, 48(6), 1649-1655. doi:10.1109/78.845922

Kozacky, W. J., & Ogunfunmi, T. (2013). An active noise control algorithm with gain and power constraints on the adaptive filter. EURASIP Journal on Advances in Signal Processing, 2013(1). doi:10.1186/1687-6180-2013-17

Mosquera-Sánchez, J. A., Desmet, W., & de Oliveira, L. P. R. (2017). A multichannel amplitude and relative-phase controller for active sound quality control. Mechanical Systems and Signal Processing, 88, 145-165. doi:10.1016/j.ymssp.2016.10.036

Rossetti, D. J., Jolly, M. R., & Southward, S. C. (1996). Control effort weighting in feedforward adaptive control systems. The Journal of the Acoustical Society of America, 99(5), 2955-2964. doi:10.1121/1.414877

Antoñanzas, C., Ferrer, M., de Diego, M., & Gonzalez, A. (2016). Blockwise Frequency Domain Active Noise Controller Over Distributed Networks. Applied Sciences, 6(5), 124. doi:10.3390/app6050124

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem