- -

Matrix formulation in Acoustics: the transfer matrix method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Matrix formulation in Acoustics: the transfer matrix method

Show full item record

Herrero Durá, I.; Cebrecos Ruiz, A.; García Raffi, LM.; Romero-García, V. (2019). Matrix formulation in Acoustics: the transfer matrix method. Modelling in Science Education and Learning. 12(2):153-164. https://doi.org/10.4995/msel.2019.12148

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138458

Files in this item

Item Metadata

Title: Matrix formulation in Acoustics: the transfer matrix method
Secondary Title: Formulación matricial en Acústica: el método de la matriz de transferencia
Author: Herrero Durá, Iván Cebrecos Ruiz, Alejandro García Raffi, Luis Miguel Romero-García, Vicente
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Matrices are introduced in mathematical subjects in connection with vector spaces and linear algebra, being disconnected from their applications in other fields of science and engineering studies. The transmission of ...[+]


[ES] Las matrices se introducen en asignaturas de Matemáticas relacionadas fundamentalmente con los contenidos relativos a los espacios vectoriales y el álgebra lineal en donde las matrices aparecen desconectadas de sus ...[+]
Subjects: Acoustics , Matrix formulation , Transfer matrix method , Acústica , Formulación matricial , Método de la matriz de transferencia
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Modelling in Science Education and Learning. (eissn: 1988-3145 )
DOI: 10.4995/msel.2019.12148
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/msel.2019.12148
Type: Artículo

References

Hazell, C. R. and MitchellI, A. K.(1986). A History of Abstract Algebra. Experimental Mechanics 26: 337. https://doi.org/10.1007/BF02320149

International Organization for Standardization (2002). Acoustics. Determination of sound absorption coefficient and impedance in impedances tubes. Part 2: Transfer-function method. ISO 10534-2:2002

Keiner, I.(2007). Experimental Eigenvalues and Mode Shapes for Flat Clamped Plates. Birkhäuser Basel. [+]
Hazell, C. R. and MitchellI, A. K.(1986). A History of Abstract Algebra. Experimental Mechanics 26: 337. https://doi.org/10.1007/BF02320149

International Organization for Standardization (2002). Acoustics. Determination of sound absorption coefficient and impedance in impedances tubes. Part 2: Transfer-function method. ISO 10534-2:2002

Keiner, I.(2007). Experimental Eigenvalues and Mode Shapes for Flat Clamped Plates. Birkhäuser Basel.

Lay, D.C. (1997). Linear algebra and its applications. Massachusetts, United States of America: Pearson.

Lesh, R. and Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem-solving. In Beyond Constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. (pp. 3-34) R. Lesh y H.M. Doerr (Eds.) Mahwah, New Jersey: Lawrence Erlbaum & Associates. https://doi.org/10.4324/9781410607713

Markos, P. and Soukoulis, C.M. (2008). Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials. Princeton university press. https://doi.org/10.1515/9781400835676

Strang, G. (2016). Introduction to Linear Algebra. (Fifth Edition) Wellesley-Cambridge Press.

Song, B.H and Bolton, J.S., (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J. Acoust. Soc. Am., 107, 1131. https://doi.org/10.1121/1.428404

[-]

This item appears in the following Collection(s)

Show full item record