- -

Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material

Mostrar el registro completo del ítem

Valverde-Muñoz, FJ.; Seredyuk, M.; Meneses-Sánchez, M.; Muñoz Roca, MDC.; Bartual-Murgui, C.; Real, JA. (2019). Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material. Chemical Science. 10:3807-3816. https://doi.org/10.1039/c8sc05256e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138472

Ficheros en el ítem

Metadatos del ítem

Título: Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material
Autor: Valverde-Muñoz, F. J. Seredyuk, M. Meneses-Sánchez, M. Muñoz Roca, María Del Carmen Bartual-Murgui, C. Real, J. A.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] A multistable spin crossover (SCO) molecular alloy system [Fe1-xMx(nBu-im)(3)(tren)](P1-yAsyF6)(2) (M = Zn-II, Ni-II; (nBu-im)(3)(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc05256e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8sc05256e
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F147/
info:eu-repo/grantAgreement/EC/H2020/734322/EU/Multifunctional Spin Crossover Materials/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
European Commission/734322
Agradecimientos:
This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), and the Generalitat Valenciana through PROMETEO/2016/147 ...[+]
Tipo: Artículo

References

Sato, O. (2016). Dynamic molecular crystals with switchable physical properties. Nature Chemistry, 8(7), 644-656. doi:10.1038/nchem.2547

König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 [+]
Sato, O. (2016). Dynamic molecular crystals with switchable physical properties. Nature Chemistry, 8(7), 644-656. doi:10.1038/nchem.2547

König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241

Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5

Spin Crossover in Transition Metal Compounds , ed. P. Gütlich and H. Goodwin , Top. Curr. Chem. , 2004 , vol. 233–235

Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c

Halcrow, M. A. (2007). The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron, 26(14), 3523-3576. doi:10.1016/j.poly.2007.03.033

Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a

Kahn, O. (1998). Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science, 279(5347), 44-48. doi:10.1126/science.279.5347.44

Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039

Salmon, L., Molnár, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631a

Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821

Matsuda, M., Kiyoshima, K., Uchida, R., Kinoshita, N., & Tajima, H. (2013). Characteristics of organic light-emitting devices consisting of dye-doped spin crossover complex films. Thin Solid Films, 531, 451-453. doi:10.1016/j.tsf.2013.01.094

Shepherd, H. J., Gural’skiy, I. A., Quintero, C. M., Tricard, S., Salmon, L., Molnár, G., & Bousseksou, A. (2013). Molecular actuators driven by cooperative spin-state switching. Nature Communications, 4(1). doi:10.1038/ncomms3607

Matsukizono, H., Kuroiwa, K., & Kimizuka, N. (2008). Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 37(4), 446-447. doi:10.1246/cl.2008.446

Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., … Weber, B. (2018). Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. Journal of the American Chemical Society, 140(2), 700-709. doi:10.1021/jacs.7b10571

Delgado, T., Meneses-Sánchez, M., Piñeiro-López, L., Bartual-Murgui, C., Muñoz, M. C., & Real, J. A. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science, 9(44), 8446-8452. doi:10.1039/c8sc02677g

Chen, Y.-C., Meng, Y., Ni, Z.-P., & Tong, M.-L. (2015). Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C, 3(5), 945-949. doi:10.1039/c4tc02580f

Koo, Y.-S., & Galán-Mascarós, J. R. (2014). Spin Crossover Probes Confer Multistability to Organic Conducting Polymers. Advanced Materials, 26(39), 6785-6789. doi:10.1002/adma.201402579

Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O., & Rodriguez, V. (2012). Magnetism and Molecular Nonlinear Optical Second-Order Response Meet in a Spin Crossover Complex. The Journal of Physical Chemistry C, 116(20), 11251-11255. doi:10.1021/jp301552u

Senthil Kumar, K., & Ruben, M. (2017). Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 346, 176-205. doi:10.1016/j.ccr.2017.03.024

Tayagaki, T., Galet, A., Molnár, G., Muñoz, M. C., Zwick, A., Tanaka, K., … Bousseksou, A. (2005). Metal Dilution Effects on the Spin-Crossover Properties of the Three-Dimensional Coordination Polymer Fe(pyrazine)[Pt(CN)4]. The Journal of Physical Chemistry B, 109(31), 14859-14867. doi:10.1021/jp0521611

Baldé, C., Desplanches, C., Gütlich, P., Freysz, E., & Létard, J. F. (2008). Effect of the metal dilution on the thermal and light-induced spin transition in [FexMn1−x(bpp)2](NCSe)2: When T(LIESST) reaches T1/2. Inorganica Chimica Acta, 361(12-13), 3529-3533. doi:10.1016/j.ica.2008.03.124

Yu, Z., Kuroda-Sowa, T., Kume, H., Okubo, T., Maekawa, M., & Munakata, M. (2009). Effects of Metal Doping on the Spin-Crossover Properties of an Iron(II) Complex with Extended π-Conjugated Schiff-Base Ligand Having an N4O2Donor Set. Bulletin of the Chemical Society of Japan, 82(3), 333-337. doi:10.1246/bcsj.82.333

Chakraborty, P., Enachescu, C., Humair, A., Egger, L., Delgado, T., Tissot, A., … Hauser, A. (2014). Light-induced spin-state switching in the mixed crystal series of the 2D coordination network {[Zn1−xFex(bbtr)3](BF4)2}∞: optical spectroscopy and cooperative effects. Dalton Trans., 43(47), 17786-17796. doi:10.1039/c4dt01728e

Baldé, C., Desplanches, C., François Létard, J., & Chastanet, G. (2017). Effects of metal dilution on the spin-crossover behavior and light induced bistability of iron(II) in [Fe Ni1−(bpp)2](NCSe)2. Polyhedron, 123, 138-144. doi:10.1016/j.poly.2016.08.046

Tovee, C. A., Kilner, C. A., Thomas, J. A., & Halcrow, M. A. (2009). Co-crystallising two functional complex molecules in a terpyridine embrace lattice. CrystEngComm, 11(10), 2069. doi:10.1039/b904528g

Halcrow, M. A. (2010). Using one spin-transition to trigger another in solid solutions of two different spin-crossover complexes. Chemical Communications, 46(26), 4761. doi:10.1039/c0cc00603c

Braga, D., Paolucci, D., Cojazzi, G., & Grepioni, F. (2001). A remarkable water-soluble (molecular) alloy with two tuneable solid-to-solid phase transitions. Chemical Communications, (9), 803-804. doi:10.1039/b101749g

Zhao, M., Peng, H., Hu, J., & Han, Z. (2008). Effect of Cobalt doping on the microstructure, electrical and ethanol-sensing properties of SmFe1−xCoxO3. Sensors and Actuators B: Chemical, 129(2), 953-957. doi:10.1016/j.snb.2007.10.012

ZHANG, R., HU, J., HAN, Z., ZHAO, M., WU, Z., ZHANG, Y., & QIN, H. (2010). Electrical and CO-sensing properties of NdFe1-xCoxO3 perovskite system. Journal of Rare Earths, 28(4), 591-595. doi:10.1016/s1002-0721(09)60160-5

Pajerowski, D. M., Yamamoto, T., & Einaga, Y. (2012). Photomagnetic K0.25Ni1–xCox[Fe(CN)6]·nH2O and K0.25Co[Fe(CN)6]0.75y[Cr(CN)6]0.75(1–y)·nH2O Prussian Blue Analogue Solid Solutions. Inorganic Chemistry, 51(6), 3648-3655. doi:10.1021/ic202571d

Sun, Y., Zhu, Z., Li, J., Gao, S., Xia, H., You, Z., … Tu, C. (2015). The Czochralski growth and characterization of a dual-wavelength Raman gain crystal Sr(MoO4)x(WO4)1−x. Optical Materials, 49, 85-89. doi:10.1016/j.optmat.2015.08.023

Chorazy, S., Stanek, J. J., Nogaś, W., Majcher, A. M., Rams, M., Kozieł, M., … Podgajny, R. (2016). Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) Molecular Solid Solution. Journal of the American Chemical Society, 138(5), 1635-1646. doi:10.1021/jacs.5b11924

Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J., & Gütlich, P. (2008). Does the Solid−Liquid Crystal Phase Transition Provoke the Spin-State Change in Spin-Crossover Metallomesogens? Journal of the American Chemical Society, 130(4), 1431-1439. doi:10.1021/ja077265z

Seredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B., & Real, J. A. (2013). Unprecedented Multi-Stable Spin Crossover Molecular Material with Two Thermal Memory Channels. Chemistry - A European Journal, 19(21), 6591-6596. doi:10.1002/chem.201300394

Seredyuk, M., Muñoz, M. C., Ksenofontov, V., Gütlich, P., Galyametdinov, Y., & Real, J. A. (2014). Spin Crossover Star-Shaped Metallomesogens of Iron(II). Inorganic Chemistry, 53(16), 8442-8454. doi:10.1021/ic5010159

Romero-Morcillo, T., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2015). Meltable Spin Transition Molecular Materials with TunableTcand Hysteresis Loop Width. Angewandte Chemie International Edition, 54(49), 14777-14781. doi:10.1002/anie.201507620

Delgado, T., Tissot, A., Guénée, L., Hauser, A., Valverde-Muñoz, F. J., Seredyuk, M., … Besnard, C. (2018). Very Long-Lived Photogenerated High-Spin Phase of a Multistable Spin-Crossover Molecular Material. Journal of the American Chemical Society, 140(40), 12870-12876. doi:10.1021/jacs.8b06042

Jeftić, J., Romstedt, H., & Hauser, A. (1996). The interplay between the spin transition and the crystallographic phase transition in the fe(II) spin-crossover system [Zn1−xFex(ptz)6](BF4)2 (x = 0.1, 1;ptz= 1-propyltetrazole). Journal of Physics and Chemistry of Solids, 57(11), 1743-1750. doi:10.1016/0022-3697(96)00033-9

Hayami, S., Komatsu, Y., Shimizu, T., Kamihata, H., & Lee, Y. H. (2011). Spin-crossover in cobalt(II) compounds containing terpyridine and its derivatives. Coordination Chemistry Reviews, 255(17-18), 1981-1990. doi:10.1016/j.ccr.2011.05.016

Schlamp, S., Weber, B., Naik, A. D., & Garcia, Y. (2011). Cooperative spin transition in a lipid layer like system. Chemical Communications, 47(25), 7152. doi:10.1039/c1cc12162f

Yamasaki, M., & Ishida, T. (2015). Heating-rate dependence of spin-crossover hysteresis observed in an iron(ii) complex having tris(2-pyridyl)methanol. Journal of Materials Chemistry C, 3(30), 7784-7787. doi:10.1039/c5tc00926j

Gaspar, A. B., & Seredyuk, M. (2014). Spin crossover in soft matter. Coordination Chemistry Reviews, 268, 41-58. doi:10.1016/j.ccr.2014.01.018

Rosario-Amorin, D., Dechambenoit, P., Bentaleb, A., Rouzières, M., Mathonière, C., & Clérac, R. (2017). Multistability at Room Temperature in a Bent-Shaped Spin-Crossover Complex Decorated with Long Alkyl Chains. Journal of the American Chemical Society, 140(1), 98-101. doi:10.1021/jacs.7b11042

Fujinami, T., Nishi, K., Hamada, D., Murakami, K., Matsumoto, N., Iijima, S., … Sunatsuki, Y. (2015). Scan Rate Dependent Spin Crossover Iron(II) Complex with Two Different Relaxations and Thermal Hysteresisfac-[FeII(HLn-Pr)3]Cl·PF6(HLn-Pr= 2-Methylimidazol-4-yl-methylideneamino-n-propyl). Inorganic Chemistry, 54(15), 7291-7300. doi:10.1021/acs.inorgchem.5b00701

Ueno, T., Ii, Y., Fujinami, T., Matsumoto, N., Iijima, S., & Sunatsuki, Y. (2017). Polymorphs of spin-crossover iron(II) complex fac -[Fe II (HL n -Pr ) 3 ]Cl·PF 6 (HL n -Pr = 2-methylimidazol-4-yl-methylideneamino- n -propyl): Assembly structures and scan rate dependent spin-crossover properties with thermal hysteresis. Polyhedron, 136, 13-22. doi:10.1016/j.poly.2017.03.028

Weselski, M., Książek, M., Rokosz, D., Dreczko, A., Kusz, J., & Bronisz, R. (2018). Double spin transition in a two dimensional Fe(ii) coordination network. Chemical Communications, 54(31), 3895-3898. doi:10.1039/c8cc01621f

Létard, J.-F., Guionneau, P., Nguyen, O., Costa, J. S., Marcén, S., Chastanet, G., … Goux-Capes, L. (2005). A Guideline to the Design of Molecular-Based Materials with Long-Lived Photomagnetic Lifetimes. Chemistry - A European Journal, 11(16), 4582-4589. doi:10.1002/chem.200500112

Ksenofontov, V., Gaspar, A. B., & Gütlich, P. (s. f.). Pressure Effect Studies on Spin Crossover and Valence Tautomeric Systems. Spin Crossover in Transition Metal Compounds III, 23-64. doi:10.1007/b95421

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001

Juhász, G., Matsuda, R., Kanegawa, S., Inoue, K., Sato, O., & Yoshizawa, K. (2009). Bistability of Magnetization without Spin-Transition in a High-Spin Cobalt(II) Complex due to Angular Momentum Quenching. Journal of the American Chemical Society, 131(13), 4560-4561. doi:10.1021/ja808448j

Turner, M. J., McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2011). Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 13(6), 1804-1813. doi:10.1039/c0ce00683a

Baran, M., Dyakonov, V., Gładczuk, L., Levchenko, G., Piechota, S., & Szymczak, H. (1995). Comparative study of the pressure effect on critical parameters of GdBa2Cu4O8 and YBa2Cu4O8. Physica C: Superconductivity, 241(3-4), 383-388. doi:10.1016/0921-4534(94)02359-x

Eiling, A., & Schilling, J. S. (1981). Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. Journal of Physics F: Metal Physics, 11(3), 623-639. doi:10.1088/0305-4608/11/3/010

Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem