- -

Regio- and Stereoselective Synthesis of 3-Pyrazolylidene-2-oxindole Compounds by Nucleophilic Vinylic Substitution of (E)-3-(Nitromethylene)indolin-2-one

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regio- and Stereoselective Synthesis of 3-Pyrazolylidene-2-oxindole Compounds by Nucleophilic Vinylic Substitution of (E)-3-(Nitromethylene)indolin-2-one

Mostrar el registro completo del ítem

Vila, C.; Slack, S.; Blay, G.; Muñoz Roca, MDC.; Pedro, JR. (2019). Regio- and Stereoselective Synthesis of 3-Pyrazolylidene-2-oxindole Compounds by Nucleophilic Vinylic Substitution of (E)-3-(Nitromethylene)indolin-2-one. Advanced Synthesis & Catalysis. 361(8):1902-1907. https://doi.org/10.1002/adsc.201900048

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138706

Ficheros en el ítem

Metadatos del ítem

Título: Regio- and Stereoselective Synthesis of 3-Pyrazolylidene-2-oxindole Compounds by Nucleophilic Vinylic Substitution of (E)-3-(Nitromethylene)indolin-2-one
Autor: Vila, C. Slack, S. Blay, G. Muñoz Roca, María Del Carmen Pedro, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] A highly regio- and stereoselective synthesis of 3-alkylidene-2-oxindoles has been described through a nucleophilic vinylic substitution (SNV) of (E)-3-(nitromethylene)indolin-2-one using pyrazol-3-ones as nucleophiles ...[+]
Palabras clave: Regioselectivity , Pyrazolone , 2-oxindole , Stereoselectivity , Vinylic substitution
Derechos de uso: Reserva de todos los derechos
Fuente:
Advanced Synthesis & Catalysis. (issn: 1615-4150 )
DOI: 10.1002/adsc.201900048
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/adsc.201900048
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-84900-P/ES/REACCIONES DE ADICION ENANTIOSELECTIVAS MEDIANTE SISTEMAS MULTICATALITICOS. HERRAMIENTAS PARA LA SINTESIS EFICIENTE DE MOLECULAS CON ACTIVIDAD FARMACOLOGICA/
info:eu-repo/grantAgreement/MINECO//RYC-2016-20187/
Agradecimientos:
Financial support from the Agencia Estatal de Investigacion (AEI, Spanish Government) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (CTQ2017-84900-P) is acknowledged. C.V. thanks the Spanish Government ...[+]
Tipo: Artículo

References

Ring Nitrogen and Key Biomolecules: The Biochemistry of N-Heterocycles Ed.: E. G. Brown Springer 1998;

Heterocyclic Chemistry Ed.: J. A. Joule K. Mills Wiley Chichester 2010;

Modern Heterocyclic Chemistry Ed.: J. Alvarez-Builla J. J. Vaquero J. Barluenga Wiley-VCH Weinheim 2011. [+]
Ring Nitrogen and Key Biomolecules: The Biochemistry of N-Heterocycles Ed.: E. G. Brown Springer 1998;

Heterocyclic Chemistry Ed.: J. A. Joule K. Mills Wiley Chichester 2010;

Modern Heterocyclic Chemistry Ed.: J. Alvarez-Builla J. J. Vaquero J. Barluenga Wiley-VCH Weinheim 2011.

Marti, C., & Carreira, E. M. (2003). Construction of Spiro[pyrrolidine-3,3′-oxindoles] − Recent Applications to the Synthesis of Oxindole Alkaloids. European Journal of Organic Chemistry, 2003(12), 2209-2219. doi:10.1002/ejoc.200300050

Galliford, C. V., & Scheidt, K. A. (2007). Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angewandte Chemie International Edition, 46(46), 8748-8758. doi:10.1002/anie.200701342

Trost, B., & Brennan, M. (2009). Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. Synthesis, 2009(18), 3003-3025. doi:10.1055/s-0029-1216975

Klein, J. E. M. N., & Taylor, R. J. K. (2011). Transition-Metal-Mediated Routes to 3,3-Disubstituted Oxindoles through Anilide Cyclisation. European Journal of Organic Chemistry, 2011(34), 6821-6841. doi:10.1002/ejoc.201100836

Millemaggi, A., & Taylor, R. J. K. (2010). 3-Alkenyl-oxindoles: Natural Products, Pharmaceuticals, and Recent Synthetic Advances in Tandem/Telescoped Approaches. European Journal of Organic Chemistry, 2010(24), 4527-4547. doi:10.1002/ejoc.201000643

HATA, K., BABA, K., & KOZAWA, M. (1978). The structure of yellow pigment from the rhizomes of Cimicifuga dahurica Maxim. CHEMICAL & PHARMACEUTICAL BULLETIN, 26(7), 2279-2280. doi:10.1248/cpb.26.2279

Weniger, B., Jiang, Y., Anton, R., Bastida, J., Varea, T., & Quirion, J.-C. (1993). Oxindole alkaloids from Neolaugeria resinosa. Phytochemistry, 32(6), 1587-1590. doi:10.1016/0031-9422(93)85185-t

Wu, X., Liu, Y., Sheng, W., Sun, J., & Qin, G. (1997). Chemical Constituents ofIsatis indigotica. Planta Medica, 63(01), 55-57. doi:10.1055/s-2006-957604

Pedras, M. S. C., Chumala, P. B., & Suchy, M. (2003). Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry, 64(5), 949-956. doi:10.1016/s0031-9422(03)00441-2

Pedras, M. S. C., Sorensen, J. L., Okanga, F. I., & Zaharia, I. L. (1999). Wasalexins A and B, new phytoalexins from wasabi: Isolation, synthesis, and antifungal activity. Bioorganic & Medicinal Chemistry Letters, 9(20), 3015-3020. doi:10.1016/s0960-894x(99)00523-5

Zhou, L., Yang, J.-S., Wu, X., Zou, J.-H., Xu, X.-D., & Tu, G.-Z. (2005). Two New Cycloartane Triterpene Glycosides and a New Alkaloid from Souliea vaginata. HETEROCYCLES, 65(6), 1409. doi:10.3987/com-04-10315

Malik, A., Fatima, I., Ahmad, I., A. Nawaz, S., Afza, N., Luttfullah, G., & Iqbal Choudhary, M. (2006). Enzyme Inhibition Studies of Oxindole Alkaloids from Isatis costata. HETEROCYCLES, 68(7), 1421. doi:10.3987/com-06-10747

Fatima, I., Ahmad, I., Anis, I., Malik, A., & Afza, N. (2007). Isatinones A and B, New Antifungal Oxindole Alkaloids from Isatis costata. Molecules, 12(2), 155-162. doi:10.3390/12020155

Xu, L., Hao, Y., Wu, X., Yu, P., Zhu, G., & Hong, Z. (2013). Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurological Research, 35(6), 561-567. doi:10.1179/1743132813y.0000000157

Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., … Schlessinger, J. (1997). Structures of the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor in Complex with Inhibitors. Science, 276(5314), 955-960. doi:10.1126/science.276.5314.955

Kimura, T., Uesugi, M., Takase, K., Miyamoto, N., & Sawada, K. (2017). Hsp90 inhibitor geldanamycin attenuates the cytotoxicity of sunitinib in cardiomyocytes via inhibition of the autophagy pathway. Toxicology and Applied Pharmacology, 329, 282-292. doi:10.1016/j.taap.2017.06.015

Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G., & Tang, C. (1998). Synthesis and Biological Evaluations of 3-Substituted Indolin-2-ones:  A Novel Class of Tyrosine Kinase Inhibitors That Exhibit Selectivity toward Particular Receptor Tyrosine Kinases. Journal of Medicinal Chemistry, 41(14), 2588-2603. doi:10.1021/jm980123i

Brandman, H. A. (1973). Preparation of ethyl 3-isatylideneacetatesViathe wittig reaction in acetic acid. Journal of Heterocyclic Chemistry, 10(3), 383-384. doi:10.1002/jhet.5570100317

Azizian, J., Mohammadizadeh, M., Kazemizadeh, Z., Karimi, N., Mohammadi, A., Karimi, A., & Alizadeh, A. (2006). A Rapid and Highly Efficient One-Pot Methodology for Preparation of Alkyl Oxindolideneacetates. Letters in Organic Chemistry, 3(1), 56-57. doi:10.2174/157017806774964387

Tang, S., Peng, Pi, S.-F., Liang, Y., Wang, N.-X., & Li, J.-H. (2008). Sequential Intermolecular Aminopalladation/ortho-Arene C−H Activation Reactions ofN-Phenylpropiolamides with Phthalimide. Organic Letters, 10(6), 1179-1182. doi:10.1021/ol800080w

Tang, S., Peng, P., Wang, Z.-Q., Tang, B.-X., Deng, C.-L., Li, J.-H., … Wang, N.-X. (2008). Synthesis of (2-Oxoindolin-3-ylidene)methyl Acetates Involving a C−H Functionalization Process. Organic Letters, 10(9), 1875-1878. doi:10.1021/ol8006315

Pinto, A., Neuville, L., Retailleau, P., & Zhu, J. (2006). Synthesis of 3-(Diarylmethylenyl)oxindole by a Palladium-Catalyzed Domino Carbopalladation/C−H Activation/C−C Bond-Forming Process. Organic Letters, 8(21), 4927-4930. doi:10.1021/ol062022h

Kamijo, S., Sasaki, Y., Kanazawa, C., Schüßeler, T., & Yamamoto, Y. (2005). Oxindole Synthesis through Intramolecular Nucleophilic Addition of Vinylpalladiums to Aryl Isocyanates. Angewandte Chemie International Edition, 44(47), 7718-7721. doi:10.1002/anie.200502252

Miura, T., Toyoshima, T., Takahashi, Y., & Murakami, M. (2008). Stereoselective Synthesis of 3-Alkylideneoxindoles by Palladium-Catalyzed Cyclization Reaction of 2-(Alkynyl)aryl Isocyanates with Organoboron Reagents. Organic Letters, 10(21), 4887-4889. doi:10.1021/ol801844w

Miura, T., Toyoshima, T., Takahashi, Y., & Murakami, M. (2009). Stereoselective Oxindole Synthesis by Palladium-Catalyzed Cyclization Reaction of 2-(Alkynyl)aryl Isocyanates with Amides. Organic Letters, 11(10), 2141-2143. doi:10.1021/ol900759f

Cantagrel, G., de Carné-Carnavalet, B., Meyer, C., & Cossy, J. (2009). Iron Trichloride-Promoted Cyclization ofo-Alkynylaryl Isocyanates: Synthesis of 3-(Chloromethylene)oxindoles. Organic Letters, 11(19), 4262-4265. doi:10.1021/ol9014877

Hirao, K., Morii, N., Joh, T., & Takahashi, S. (1995). Rhodium-catalyzed carbonylation of 2-alkynylaniline: Syntheses of 1,3-dihydroindol-2-ones. Tetrahedron Letters, 36(35), 6243-6246. doi:10.1016/0040-4039(95)01202-s

(s. f.). doi:10.1021/ol060733

Fielding, M. R., Grigg, R., & Urch, C. J. (2000). Novel synthesis of oxindoles from carbamoyl chlorides via palladium catalysed cyclisation–anion capture. Chemical Communications, (22), 2239-2240. doi:10.1039/b006765m

Inoue, M., Takahashi, T., Furuyama, H., & Hirama, M. (2006). Structural Factors Governing Stereoselective Heck Reaction for the ­Construction of the Oxindole Portion of TMC-95A. Synlett, 2006(18), 3037-3040. doi:10.1055/s-2006-951522

Lu, B., & Ma, D. (2006). Assembly of 3-Acyloxindoles via CuI/l-Proline-Catalyzed Intramolecular Arylation of β-Keto Amides. Organic Letters, 8(26), 6115-6118. doi:10.1021/ol0625886

Tu, Z., Tan, J., Chen, Z., & Tu, T. (2017). Iridium-Catalyzed Regio- and Stereoselective C-H Oxidative Reaction to (Z )-3-Arylidene-2-oxindole Imides under Neutral Conditions. Advanced Synthesis & Catalysis, 359(24), 4294-4299. doi:10.1002/adsc.201700983

Yuan, W.-K., Cui, T., Liu, W., Wen, L.-R., & Li, M. (2018). When Ethyl Isocyanoacetate Meets Isatins: A 1,3-Dipolar/Inverse 1,3-Dipolar/Olefination Reaction for Access to 3-Ylideneoxindoles. Organic Letters, 20(6), 1513-1516. doi:10.1021/acs.orglett.8b00217

F. Suzdalev, K., N. Babakova, M., G. Kartsev, V., & A. Krasnov, K. (2015). Reaction of 2-Chloro-1-alkyl-1H-Indol-3-carbaldehydes with Barbituric Acids and 5-Methyl-2-phenyl-2,4-dihydropyrazol-3-one. Formation of Compound with Extremely Short Intramolecular Hydrogen Bond in Eight-Membered Pseudocycle. HETEROCYCLES, 91(1), 64. doi:10.3987/com-14-13135

Qian, D., & Zhang, J. (2012). Catalytic oxidation/C–H functionalization of N-arylpropiolamides by means of gold carbenoids: concise route to 3-acyloxindoles. Chemical Communications, 48(56), 7082. doi:10.1039/c2cc31972a

Bernasconi, C. F., & Rappoport, Z. (2009). Recent Advances in Our Mechanistic Understanding of SNV Reactions. Accounts of Chemical Research, 42(8), 993-1003. doi:10.1021/ar900048q

Arai, T., Yamamoto, Y., Awata, A., Kamiya, K., Ishibashi, M., & Arai, M. A. (2013). Catalytic Asymmetric Synthesis of Mixed 3,3′-Bisindoles and Their Evaluation as Wnt Signaling Inhibitors. Angewandte Chemie International Edition, 52(9), 2486-2490. doi:10.1002/anie.201208918

Zhang, H., Liu, Y., Chen, R., Xue, J., Li, Y., & Tang, Y. (2013). Metal-Free Coupling of 3-Alkenyl Oxoindoles by Nucleophilic Vinylic Substitution of Nitroolefins. Asian Journal of Organic Chemistry, 2(4), 307-310. doi:10.1002/ajoc.201300032

G. Varvounis Pyrazol-3-ones. Part IV: Synthesis and Applications 2009 Advances in Heterocyclic Chemistry Academic Press New York 98

Yokoyama, N., Ritter, B., & Neubert, A. D. (1982). 2-Arylpyrazolo[4,3-c]quinolin-3-ones: a novel agonist, a partial agonist and an antagonist of benzodiazepines. Journal of Medicinal Chemistry, 25(4), 337-339. doi:10.1021/jm00346a002

Fryer, R. I., Zhang, P., Rios, R., Gu, Z. Q., Basile, A. S., & Skolnick, P. (1993). Structure-activity relationship studies at benzodiazepine receptor (BZR): a comparison of the substituent effects of pyrazoloquinolinone analogs. Journal of Medicinal Chemistry, 36(11), 1669-1673. doi:10.1021/jm00063a017

Savini, L., Massarelli, P., Nencini, C., Pellerano, C., Biggio, G., Maciocco, A., … Carotti, A. (1998). High affinity central benzodiazepine receptor ligands: synthesis and structure–activity relationship studies of a new series of pyrazolo[4,3- c ]quinolin-3-ones. Bioorganic & Medicinal Chemistry, 6(4), 389-399. doi:10.1016/s0968-0896(97)10039-6

Caruso, F., Rossi, M., Tanski, J., Sartori, R., Sariego, R., Moya, S., … Pettinari, C. (2000). Synthesis, Structure, and Antitumor Activity of a Novel Tetranuclear Titanium Complex. Journal of Medicinal Chemistry, 43(20), 3665-3670. doi:10.1021/jm990539b

Ferlin, M. G., Chiarelotto, G., Dall’Acqua, S., Maciocco, E., Mascia, M. P., Pisu, M. G., & Biggio, G. (2005). Novel anellated pyrazoloquinolin-3-ones: synthesis and in vitro BZR activity. Bioorganic & Medicinal Chemistry, 13(10), 3531-3541. doi:10.1016/j.bmc.2005.02.042

Kimata, A., Nakagawa, H., Ohyama, R., Fukuuchi, T., Ohta, S., Suzuki, T., & Miyata, N. (2007). New Series of Antiprion Compounds:  Pyrazolone Derivatives Have the Potent Activity of Inhibiting Protease-Resistant Prion Protein Accumulation. Journal of Medicinal Chemistry, 50(21), 5053-5056. doi:10.1021/jm070688r

‘‘Dipyrone’’. Martindale: The Complete Drug Reference Ed. A. Brayfield Pharmaceutical Press 2014.

Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., & Isaji, M. (2008). Remogliflozin Etabonate, in a Novel Category of Selective Low-Affinity Sodium Glucose Cotransporter (SGLT2) Inhibitors, Exhibits Antidiabetic Efficacy in Rodent Models. Journal of Pharmacology and Experimental Therapeutics, 327(1), 268-276. doi:10.1124/jpet.108.140210

Vila, C., Amr, F. I., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - An Asian Journal, 11(10), 1532-1536. doi:10.1002/asia.201600325

Amr, F. I., Vila, C., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Alkylation of Pyrazol-3-ones with Isatin-Derived Ketimines: Stereocontrolled Construction of Vicinal Tetrasubstituted Stereocenters. Advanced Synthesis & Catalysis, 358(10), 1583-1588. doi:10.1002/adsc.201600036

Tang, X., Chang, J., Liu, C., & Zhang, B. (2014). Base initiated aromatization/CO bond formation: a new entry to O-pyrazole polyfluoroarylated ethers. Tetrahedron Letters, 55(48), 6534-6537. doi:10.1016/j.tetlet.2014.09.129

CCDC 1889981 (3 ka) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

CCDC 1890014 (5 aa) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem