- -

Bayesian recursive mixed linear model for gene expression analyses with continuous covariates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Bayesian recursive mixed linear model for gene expression analyses with continuous covariates

Show full item record

Casellas, J.; Ibáñez-Escriche, N. (2012). Bayesian recursive mixed linear model for gene expression analyses with continuous covariates. Journal of Animal Science. 90(1):67-75. https://doi.org/10.2527/jas.2010-3750

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138742

Files in this item

Item Metadata

Title: Bayesian recursive mixed linear model for gene expression analyses with continuous covariates
Author: Casellas, J. Ibáñez-Escriche, Noelia
UPV Unit: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] The analysis of microarray gene expression data has experienced a remarkable growth in scientific research over the last few years and is helping to decipher the genetic background of several productive traits. ...[+]
Subjects: Bayesian inference , Gene expression , Microarray , Mixed model , Recursive
Copyrigths: Cerrado
Source:
Journal of Animal Science. (issn: 0021-8812 )
DOI: 10.2527/jas.2010-3750
Publisher:
American Society of Animal Science
Publisher version: https://doi.org/10.2527/jas.2010-3750
Project ID:
info:eu-repo/grantAgreement/MICINN//RYC-2009-04049/ES/RYC-2009-04049/
info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-01/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/
info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-02/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/
Thanks:
This research was funded by grant AGL2008-04818-C03 (Ministerio de Ciencia e Innovacion, Madrid, Spain). The research contract of J. Casellas was partially financed by the Ministerio de Ciencia e Innovacion of Spain (program ...[+]
Type: Artículo

References

Bernard, C., Cassar-Malek, I., Le Cunff, M., Dubroeucq, H., Renand, G., & Hocquette, J.-F. (2007). New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes. Journal of Agricultural and Food Chemistry, 55(13), 5229-5237. doi:10.1021/jf063372l

Bhowmick, D. (2006). A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics, 7(4), 630-641. doi:10.1093/biostatistics/kxj032

Bing, N., Hoeschele, I., Ye, K., & Eilertsen, K. J. (2005). Finite mixture model analysis of microarray expression data on samples of uncertain biological type with application to reproductive efficiency. Veterinary Immunology and Immunopathology, 105(3-4), 187-196. doi:10.1016/j.vetimm.2005.02.008 [+]
Bernard, C., Cassar-Malek, I., Le Cunff, M., Dubroeucq, H., Renand, G., & Hocquette, J.-F. (2007). New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes. Journal of Agricultural and Food Chemistry, 55(13), 5229-5237. doi:10.1021/jf063372l

Bhowmick, D. (2006). A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics, 7(4), 630-641. doi:10.1093/biostatistics/kxj032

Bing, N., Hoeschele, I., Ye, K., & Eilertsen, K. J. (2005). Finite mixture model analysis of microarray expression data on samples of uncertain biological type with application to reproductive efficiency. Veterinary Immunology and Immunopathology, 105(3-4), 187-196. doi:10.1016/j.vetimm.2005.02.008

Caetano, A. R., Johnson, R. K., Ford, J. J., & Pomp, D. (2004). Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate. Genetics, 168(3), 1529-1537. doi:10.1534/genetics.104.029595

Casellas, J., Ibáñez-Escriche, N., Martínez-Giner, M., & Varona, L. (2008). geamm v.1.4: a versatile program for mixed model analysis of gene expression data. Animal Genetics, 39(1), 89-90. doi:10.1111/j.1365-2052.2007.01670.x

Casellas, J., & Varona, L. (2008). Between-groups within-gene heterogeneity of residual variances in microarray gene expression data. BMC Genomics, 9(1), 319. doi:10.1186/1471-2164-9-319

Cui, X., & Churchill, G. A. (2003). Genome Biology, 4(4), 210. doi:10.1186/gb-2003-4-4-210

Cui, X., Hwang, J. T. G., Qiu, J., Blades, N. J., & Churchill, G. A. (2004). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics, 6(1), 59-75. doi:10.1093/biostatistics/kxh018

De los Campos, G., Gianola, D., Boettcher, P., & Moroni, P. (2006). A structural equation model for describing relationships between somatic cell score and milk yield in dairy goats1. Journal of Animal Science, 84(11), 2934-2941. doi:10.2527/jas.2006-016

Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., … Lander, E. S. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286(5439), 531-537. doi:10.1126/science.286.5439.531

Gottardo, R., Raftery, A. E., Yee Yeung, K., & Bumgarner, R. E. (2005). Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples. Biometrics, 62(1), 10-18. doi:10.1111/j.1541-0420.2005.00397.x

Henderson, C. R. 1973. Sire evaluation and genetic trends. Pages 10–41 in Proc. Anim. Breeding Genet. Symp. in Honor of Dr. Jay L. Lush. Am. Soc. Anim. Sci., Champaign, IL.

Hoeschele, I. (2005). A note on joint versus gene-specific mixed model analysis of microarray gene expression data. Biostatistics, 6(2), 183-186. doi:10.1093/biostatistics/kxi001

Ibáñez-Escriche, N., López de Maturana, E., Noguera, J. L., & Varona, L. (2010). An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs1. Journal of Animal Science, 88(11), 3493-3503. doi:10.2527/jas.2009-2557

Khondoker, M. R., Glasbey, C. A., & Worton, B. J. (2005). Statistical estimation of gene expression using multiple laser scans of microarrays. Bioinformatics, 22(2), 215-219. doi:10.1093/bioinformatics/bti790

Lin, C. S., & Hsu, C. W. (2005). Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs1. Journal of Animal Science, 83(9), 2075-2086. doi:10.2527/2005.8392075x

Liu, B., de la Fuente, A., & Hoeschele, I. (2008). Gene Network Inference via Structural Equation Modeling in Genetical Genomics Experiments. Genetics, 178(3), 1763-1776. doi:10.1534/genetics.107.080069

De Maturana, E. L., Wu, X.-L., Gianola, D., Weigel, K. A., & Rosa, G. J. M. (2008). Exploring Biological Relationships Between Calving Traits in Primiparous Cattle with a Bayesian Recursive Model. Genetics, 181(1), 277-287. doi:10.1534/genetics.108.094888

Marot, G., Foulley, J.-L., & Jaffrézic, F. (2009). A structural mixed model to shrink covariance matrices for time-course differential gene expression studies. Computational Statistics & Data Analysis, 53(5), 1630-1638. doi:10.1016/j.csda.2008.04.018

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., … Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. doi:10.1038/35021093

Purdom, E., & Holmes, S. P. (2005). Error Distribution for Gene Expression Data. Statistical Applications in Genetics and Molecular Biology, 4(1). doi:10.2202/1544-6115.1070

Reverter, A., Byrne, K. A., Bruce, H. L., Wang, Y. H., Dalrymple, B. P., & Lehnert, S. A. (2003). A mixture model-based cluster analysis of DNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and low-quality diets1. Journal of Animal Science, 81(8), 1900-1910. doi:10.2527/2003.8181900x

Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Statistics for Biology and Health. doi:10.1007/b98952

Van Iterson, M., ’t Hoen, P., Pedotti, P., Hooiveld, G., den Dunnen, J., van Ommen, G., … Menezes, R. (2009). Relative power and sample size analysis on gene expression profiling data. BMC Genomics, 10(1), 439. doi:10.1186/1471-2164-10-439

Varona, L., Sorensen, D., & Thompson, R. (2007). Analysis of Litter Size and Average Litter Weight in Pigs Using a Recursive Model. Genetics, 177(3), 1791-1799. doi:10.1534/genetics.107.077818

Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P., … Paules, R. S. (2001). Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models. Journal of Computational Biology, 8(6), 625-637. doi:10.1089/106652701753307520

Wright, S. (1922). Coefficients of Inbreeding and Relationship. The American Naturalist, 56(645), 330-338. doi:10.1086/279872

Wu, H., Kerr, M. K., Cui, X., & Churchill, G. A. (2003). MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments. The Analysis of Gene Expression Data, 313-341. doi:10.1007/0-387-21679-0_14

Xiong, M., Li, J., & Fang, X. (2004). Identification of Genetic Networks. Genetics, 166(2), 1037-1052. doi:10.1534/genetics.166.2.1037

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record