- -

Bayesian recursive mixed linear model for gene expression analyses with continuous covariates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bayesian recursive mixed linear model for gene expression analyses with continuous covariates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casellas, J. es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.date.accessioned 2020-03-12T06:51:47Z
dc.date.available 2020-03-12T06:51:47Z
dc.date.issued 2012-01 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138742
dc.description.abstract [EN] The analysis of microarray gene expression data has experienced a remarkable growth in scientific research over the last few years and is helping to decipher the genetic background of several productive traits. Nevertheless, most analytical approaches have relied on the comparison of 2 (or a few) well-defined groups of biological conditions where the continuous covariates have no sense (e. g., healthy vs. cancerous cells). Continuous effects could be of special interest when analyzing gene expression in animal production-oriented studies (e. g., birth weight), although very few studies address this peculiarity in the animal science framework. Within this context, we have developed a recursive linear mixed model where not only are linear covariates accounted for during gene expression analyses but also hierarchized and the effects of their genetic, environmental, and residual components on differential gene expression inferred independently. This parameterization allows a step forward in the inference of differential gene expression linked to a given quantitative trait such as birth weight. The statistical performance of this recursive model was exemplified under simulation by accounting for different sample sizes (n), heritabilities for the quantitative trait (h(2)), and magnitudes of differential gene expression (lambda). It is important to highlight that statistical power increased with n, h(2), and lambda, and the recursive model exceeded the standard linear mixed model with linear (nonrecursive) covariates in the majority of scenarios. This new parameterization would provide new insights about gene expression in the animal science framework, opening a new research scenario where within-covariate sources of differential gene expression could be individualized and estimated. The source code of the program accommodating these analytical developments and additional information about practical aspects on running the program are freely available by request to the corresponding author of this article. es_ES
dc.description.sponsorship This research was funded by grant AGL2008-04818-C03 (Ministerio de Ciencia e Innovacion, Madrid, Spain). The research contract of J. Casellas was partially financed by the Ministerio de Ciencia e Innovacion of Spain (program Ramon y Cajal, reference RYC-2009-04049). The authors are also indebted to 2 anonymous referees for their helpful comments on the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian inference es_ES
dc.subject Gene expression es_ES
dc.subject Microarray es_ES
dc.subject Mixed model es_ES
dc.subject Recursive es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Bayesian recursive mixed linear model for gene expression analyses with continuous covariates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2527/jas.2010-3750 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2009-04049/ES/RYC-2009-04049/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-01/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-02/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Casellas, J.; Ibáñez-Escriche, N. (2012). Bayesian recursive mixed linear model for gene expression analyses with continuous covariates. Journal of Animal Science. 90(1):67-75. https://doi.org/10.2527/jas.2010-3750 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2527/jas.2010-3750 es_ES
dc.description.upvformatpinicio 67 es_ES
dc.description.upvformatpfin 75 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\395256 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bernard, C., Cassar-Malek, I., Le Cunff, M., Dubroeucq, H., Renand, G., & Hocquette, J.-F. (2007). New Indicators of Beef Sensory Quality Revealed by Expression of Specific Genes. Journal of Agricultural and Food Chemistry, 55(13), 5229-5237. doi:10.1021/jf063372l es_ES
dc.description.references Bhowmick, D. (2006). A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics, 7(4), 630-641. doi:10.1093/biostatistics/kxj032 es_ES
dc.description.references Bing, N., Hoeschele, I., Ye, K., & Eilertsen, K. J. (2005). Finite mixture model analysis of microarray expression data on samples of uncertain biological type with application to reproductive efficiency. Veterinary Immunology and Immunopathology, 105(3-4), 187-196. doi:10.1016/j.vetimm.2005.02.008 es_ES
dc.description.references Caetano, A. R., Johnson, R. K., Ford, J. J., & Pomp, D. (2004). Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate. Genetics, 168(3), 1529-1537. doi:10.1534/genetics.104.029595 es_ES
dc.description.references Casellas, J., Ibáñez-Escriche, N., Martínez-Giner, M., & Varona, L. (2008). geamm v.1.4: a versatile program for mixed model analysis of gene expression data. Animal Genetics, 39(1), 89-90. doi:10.1111/j.1365-2052.2007.01670.x es_ES
dc.description.references Casellas, J., & Varona, L. (2008). Between-groups within-gene heterogeneity of residual variances in microarray gene expression data. BMC Genomics, 9(1), 319. doi:10.1186/1471-2164-9-319 es_ES
dc.description.references Cui, X., & Churchill, G. A. (2003). Genome Biology, 4(4), 210. doi:10.1186/gb-2003-4-4-210 es_ES
dc.description.references Cui, X., Hwang, J. T. G., Qiu, J., Blades, N. J., & Churchill, G. A. (2004). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics, 6(1), 59-75. doi:10.1093/biostatistics/kxh018 es_ES
dc.description.references De los Campos, G., Gianola, D., Boettcher, P., & Moroni, P. (2006). A structural equation model for describing relationships between somatic cell score and milk yield in dairy goats1. Journal of Animal Science, 84(11), 2934-2941. doi:10.2527/jas.2006-016 es_ES
dc.description.references Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734 es_ES
dc.description.references Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., … Lander, E. S. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286(5439), 531-537. doi:10.1126/science.286.5439.531 es_ES
dc.description.references Gottardo, R., Raftery, A. E., Yee Yeung, K., & Bumgarner, R. E. (2005). Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples. Biometrics, 62(1), 10-18. doi:10.1111/j.1541-0420.2005.00397.x es_ES
dc.description.references Henderson, C. R. 1973. Sire evaluation and genetic trends. Pages 10–41 in Proc. Anim. Breeding Genet. Symp. in Honor of Dr. Jay L. Lush. Am. Soc. Anim. Sci., Champaign, IL. es_ES
dc.description.references Hoeschele, I. (2005). A note on joint versus gene-specific mixed model analysis of microarray gene expression data. Biostatistics, 6(2), 183-186. doi:10.1093/biostatistics/kxi001 es_ES
dc.description.references Ibáñez-Escriche, N., López de Maturana, E., Noguera, J. L., & Varona, L. (2010). An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs1. Journal of Animal Science, 88(11), 3493-3503. doi:10.2527/jas.2009-2557 es_ES
dc.description.references Khondoker, M. R., Glasbey, C. A., & Worton, B. J. (2005). Statistical estimation of gene expression using multiple laser scans of microarrays. Bioinformatics, 22(2), 215-219. doi:10.1093/bioinformatics/bti790 es_ES
dc.description.references Lin, C. S., & Hsu, C. W. (2005). Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs1. Journal of Animal Science, 83(9), 2075-2086. doi:10.2527/2005.8392075x es_ES
dc.description.references Liu, B., de la Fuente, A., & Hoeschele, I. (2008). Gene Network Inference via Structural Equation Modeling in Genetical Genomics Experiments. Genetics, 178(3), 1763-1776. doi:10.1534/genetics.107.080069 es_ES
dc.description.references De Maturana, E. L., Wu, X.-L., Gianola, D., Weigel, K. A., & Rosa, G. J. M. (2008). Exploring Biological Relationships Between Calving Traits in Primiparous Cattle with a Bayesian Recursive Model. Genetics, 181(1), 277-287. doi:10.1534/genetics.108.094888 es_ES
dc.description.references Marot, G., Foulley, J.-L., & Jaffrézic, F. (2009). A structural mixed model to shrink covariance matrices for time-course differential gene expression studies. Computational Statistics & Data Analysis, 53(5), 1630-1638. doi:10.1016/j.csda.2008.04.018 es_ES
dc.description.references Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., … Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. doi:10.1038/35021093 es_ES
dc.description.references Purdom, E., & Holmes, S. P. (2005). Error Distribution for Gene Expression Data. Statistical Applications in Genetics and Molecular Biology, 4(1). doi:10.2202/1544-6115.1070 es_ES
dc.description.references Reverter, A., Byrne, K. A., Bruce, H. L., Wang, Y. H., Dalrymple, B. P., & Lehnert, S. A. (2003). A mixture model-based cluster analysis of DNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and low-quality diets1. Journal of Animal Science, 81(8), 1900-1910. doi:10.2527/2003.8181900x es_ES
dc.description.references Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Statistics for Biology and Health. doi:10.1007/b98952 es_ES
dc.description.references Van Iterson, M., ’t Hoen, P., Pedotti, P., Hooiveld, G., den Dunnen, J., van Ommen, G., … Menezes, R. (2009). Relative power and sample size analysis on gene expression profiling data. BMC Genomics, 10(1), 439. doi:10.1186/1471-2164-10-439 es_ES
dc.description.references Varona, L., Sorensen, D., & Thompson, R. (2007). Analysis of Litter Size and Average Litter Weight in Pigs Using a Recursive Model. Genetics, 177(3), 1791-1799. doi:10.1534/genetics.107.077818 es_ES
dc.description.references Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P., … Paules, R. S. (2001). Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models. Journal of Computational Biology, 8(6), 625-637. doi:10.1089/106652701753307520 es_ES
dc.description.references Wright, S. (1922). Coefficients of Inbreeding and Relationship. The American Naturalist, 56(645), 330-338. doi:10.1086/279872 es_ES
dc.description.references Wu, H., Kerr, M. K., Cui, X., & Churchill, G. A. (2003). MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments. The Analysis of Gene Expression Data, 313-341. doi:10.1007/0-387-21679-0_14 es_ES
dc.description.references Xiong, M., Li, J., & Fang, X. (2004). Identification of Genetic Networks. Genetics, 166(2), 1037-1052. doi:10.1534/genetics.166.2.1037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem