AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]
Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil Engineering
Álvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007
[+]
AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]
Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil Engineering
Álvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007
Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. doi:10.5194/nhess-4-29-2004
Barstad, I., Grabowski, W. W., & Smolarkiewicz, P. K. (2007). Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 340(1-2), 78-90. doi:10.1016/j.jhydrol.2007.04.005
Creutin, J. D., & Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resources Research, 18(2), 413-431. doi:10.1029/wr018i002p00413
Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140-158. doi:10.1175/1520-0450(1994)033<0140:astmfm>2.0.co;2
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., … Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15), 2031-2064. doi:10.1002/joc.1688
Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., & Swift, L. W. (2017). High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology, 37, 124-137. doi:10.1002/joc.4986
Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155-157. doi:10.1256/wea.87.03
Falivene, O., Cabrera, L., Tolosana-Delgado, R., & Sáez, A. (2010). Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geosciences, 36(4), 512-519. doi:10.1016/j.cageo.2009.09.015
Fiering, B., & Jackson, B. (1971). Synthetic Streamflows. Water Resources Monograph. doi:10.1029/wm001
Gambolati, G., & Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625-629. doi:10.1029/wr015i003p00625
Gómez-Hernández, J. J., Cassiraga, E. F., Guardiola-Albert, C., & Rodríguez, J. Á. (2001). Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. geoENV III — Geostatistics for Environmental Applications, 67-78. doi:10.1007/978-94-010-0810-5_6
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129. doi:10.1016/s0022-1694(00)00144-x
Hanson, C. L. (1982). DISTRIBUTION AND STOCHASTIC GENERATION OF ANNUAL AND MONTHLY PRECIPITATION ON A MOUNTAINOUS WATERSHED IN SOUTHWEST IDAHO. Journal of the American Water Resources Association, 18(5), 875-883. doi:10.1111/j.1752-1688.1982.tb00085.x
Lloyd, C. D. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150. doi:10.1016/j.jhydrol.2004.10.026
Marquı́nez, J., Lastra, J., & Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1-2), 1-11. doi:10.1016/s0022-1694(02)00110-5
Martínez-Cob, A. (1996). Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. Journal of Hydrology, 174(1-2), 19-35. doi:10.1016/0022-1694(95)02755-6
Mitáš, L., & Mitášová, H. (1988). General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12), 983-992. doi:10.1016/0898-1221(88)90255-6
Naoum, S., & Tsanis, I. K. (2004). Orographic Precipitation Modeling with Multiple Linear Regression. Journal of Hydrologic Engineering, 9(2), 79-102. doi:10.1061/(asce)1084-0699(2004)9:2(79)
Ninyerola, M., Pons, X., & Roure, J. M. (2006). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, 89(3-4), 195-209. doi:10.1007/s00704-006-0264-2
Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012
Rotunno, R., & Ferretti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Sciences, 58(13), 1732-1749. doi:10.1175/1520-0469(2001)058<1732:moiar>2.0.co;2
Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrology Research, 26(4-5), 259-284. doi:10.2166/nh.1995.0015
Tabios, G. Q., & Salas, J. D. (1985). A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION. Journal of the American Water Resources Association, 21(3), 365-380. doi:10.1111/j.1752-1688.1985.tb00147.x
THIESSEN, A. H. (1911). PRECIPITATION AVERAGES FOR LARGE AREAS. Monthly Weather Review, 39(7), 1082-1089. doi:10.1175/1520-0493(1911)39<1082b:pafla>2.0.co;2
Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010
Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. doi:10.1007/bf00891270
Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26(5), 589-603. doi:10.1007/bf02089243
World Climate Programme.1985. World Meteorological Organization. Review of Requirements for Area‐Averaged Precipitation Data Surface‐Based and Space‐Based Estimation Techniques Space and Time Sampling Accurancy and Error; Data Exchange. Boulder Colorado EE.UU. 17–19
[-]