- -

New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juste-Dolz, Augusto Miguel es_ES
dc.contributor.author Do Nascimento, Noelle Mariane es_ES
dc.contributor.author Monzó, Isidro S. es_ES
dc.contributor.author Grau-García, Elena es_ES
dc.contributor.author Roman-Ivorra, J. A. es_ES
dc.contributor.author López-Paz, José Luis es_ES
dc.contributor.author Escorihuela Fuentes, Jorge es_ES
dc.contributor.author Puchades, Rosa es_ES
dc.contributor.author Morais, Sergi es_ES
dc.contributor.author Giménez-Romero, David es_ES
dc.contributor.author Maquieira Catala, Angel es_ES
dc.date.accessioned 2020-03-13T08:29:22Z
dc.date.available 2020-03-13T08:29:22Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1618-2642 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138905
dc.description The final publication is available at link.springer.com. es_ES
dc.description.abstract [EN] The mechanism of self-recognition of the autoantigen TROVE2, a common biomarker in autoimmune diseases, has been studied with a quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarization interferometry (DPI). The complementarity and remarkable analytical features of both techniques has allowed new insights into the onset of systemic lupus erythematosus (SLE) to be achieved at the molecular level. The in vitro study for SLE patients and healthy subjects suggests that anti-TROVE2 autoantibodies may undergo an antibody bipolar bridging. An epitope-paratope-specific binding initially occurs to activate a hidden Fc receptor in the TROVE2 tertiary structure. This bipolar mechanism may contribute to the pathogenic accumulation of anti-TROVE2 autoantibody immune complex in autoimmune disease. Furthermore, the specific calcium-dependent protein-protein bridges point out at how the TRIM21/TROVE2 association might occur, suggesting that the TROVE2 protein could stimulate the intracellular immune signaling via the TRIM21 PRY-SPRY domain. These findings may help to better understand the origins of the specificity and affinity of TROVE2 interactions, which might play a key role in the SLE pathogenesis. This manuscript gives one of the first practical applications of two novel functions (-df/dD and Delta h/molec) for the analysis of the data provided by QCM-D and DPI. In addition, it is the first time that QCM-D has been used for mapping hidden Fc receptors as well as linear epitopes in a protein tertiary structure. es_ES
dc.description.sponsorship We would like to thank Sylvia Daunert for her invaluable help with the discussion of the paper. Furthermore, we acknowledge financial support from the Generalitat Valenciana (GVA-PROMETEOII/2014/040) as well as the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under award numbers CTQ2013-45875-R and CTQ2013-42914-R es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject TROVE2 es_ES
dc.subject Antibody bipolar bridging es_ES
dc.subject Systemic lupus erythematosus es_ES
dc.subject Epitope mapping es_ES
dc.subject QCM-D es_ES
dc.subject Dual polarization interferometry es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-018-1407-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-42914-R/ES/SERODIAGNOSTICO DE ENFERMEDADES AUTOINMUNES A TRAVES DE LA RED IDIOTIPO-ANTIIDIOTIPO. BASES Y APLICACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F040/ES/Estudio de estrategias fisico-químicas para el desarrollo de biosensores interferométricos en soportes interactivos de aplicación en clínica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-45875-R/ES/BIOSENSADO EN SOPORTES INTERACTIVOS CON PROPIEDADES INTERFEROMETRICAS PARA APLICACIONES CLINICAS. DEMOSTRACION EN FARMACOGENETICA Y ALERGIAS MEDICAMENTOSAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Juste-Dolz, AM.; Do Nascimento, NM.; Monzó, IS.; Grau-García, E.; Roman-Ivorra, JA.; López-Paz, JL.; Escorihuela Fuentes, J.... (2019). New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus eythematosus determined by a combiantion of QCM-D and DPI. Analytical and Bioanalytical Chemistry. 411(19):4709-4720. https://doi.org/10.1007/s00216-018-1407-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00216-018-1407-x es_ES
dc.description.upvformatpinicio 4709 es_ES
dc.description.upvformatpfin 4720 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 411 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\387099 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kakatia S, Teronpia R, Barmanb B. Frequency, pattern and determinants of flare in systemic lupus erythematosus: a study from North East India. Egypt Rheumatol. 2015;37:S55–9. es_ES
dc.description.references Kuhn A, Wenzel J, Weyd H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clinic Rev Allerg Immunol. 2014;47:148–62. es_ES
dc.description.references American Lupus Foundation. 2016. http://www.lupus.org . es_ES
dc.description.references World Health Organization. Environmental health criteria 236. Geneva: WHO Press; 2006. es_ES
dc.description.references Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol. 2017;29:1040–8711. es_ES
dc.description.references Routsias JG, Tzioufas AG, Moutsopoulos HM. The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta. 2004;340:1–25. es_ES
dc.description.references Franceschini F, Cavazzana I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity. 2005;38:55–63. es_ES
dc.description.references Kelekar A, Saitta MR, Keene JD. Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins. J Clin Ivest. 1994;93:1637–44. es_ES
dc.description.references Slobbe RL, Pluk W, van Venrooij WJ, Prujin GJM. Ro ribonucleoprotein assembly in vitro: identification of RNA-protein and protein-protein interactions. J Mol Biol. 1992;2:361–6. es_ES
dc.description.references Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell. 2013;153:166–77. es_ES
dc.description.references Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell. 2005;121:529–39. es_ES
dc.description.references Reed JH, Gordon TP. Autoimmunity: Ro60-associated RNA takes its toll on disease pathogenesis. Nat Rev Rheumatol. 2016;12:136–8. es_ES
dc.description.references Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell. 2009;20:1555–64. es_ES
dc.description.references Reed JH, Jackson MW, Gordon TP. A B cell apotope of Ro 60 in systemic lupus erythematosus. Arthritis Rheum. 2008;58:1125–9. es_ES
dc.description.references Wolin SL, Reinisch KM. The Ro 60 kDa autoantigen comes into focus: interpreting epitope mapping experiments on the basis of structure. Autoimmun Rev. 2006;5:367–72. es_ES
dc.description.references Routsias JG, Tzioufas AG. B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: tools to study the regulation of the autoimmune response. J Autoimmun. 2010;35:256–64. es_ES
dc.description.references Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin a domains: widely dispersed domains with roles in cell adhesion and elsewere. Mol Bio Cell. 2002;13:3369–87. es_ES
dc.description.references Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collier RJ. Crystal structure of the von Willebrand factor a domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2004;101:6367–72. es_ES
dc.description.references O’Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994;8:2891–903. es_ES
dc.description.references Chen X, Wolin SL. The Ro 60 autoantigen : insights into cellular function and role in autoimmunity. J Mol Med (Berl). 2004;82:232–9. es_ES
dc.description.references Escorihuela J, González-Martínez MA, López-Paz JL, Puchades R, Maquieira A, Gimenez-Romero D. Dual-polarization interferometry: a novel technique to light up the nanomolecular world. Chem Rev. 2014;115:265–94. es_ES
dc.description.references do Nascimento NM, Juste-Dolz A, Bueno PR, Monzó I, Tejero R, Lopez-Paz JL, et al. Mapping molecular binding by means of conformational dynamics measurements. RSC Adv. 2018;8:867–76. es_ES
dc.description.references do Nascimento NM, Juste-Dolz A, Grau-García E, Román-Ivorra J, Puchades R, Maquieira A, et al. Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosens. Bioelectron. 2016;90:166–73. es_ES
dc.description.references Seo MH, Park J, Kim E, Hohng S, Kim HS. Protein conformational dynamics dictate the binding affinity for a ligand. Nat Commun. 2014;5:3724. es_ES
dc.description.references Lakshmanan RS, Efremov V, O’Donnell JS, Killard AJ. Measurement of the viscoelastic properties of blood plasma clot formation in response to tissue factor concentration-dependent activation. Anal Bioanal Chem. 2016;408:6581–8. es_ES
dc.description.references Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanl Chem. 2007;388:367–75. es_ES
dc.description.references Shen F, Rojas OJ, Genzer J, Gurgel PV, Carbonell RG. Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Anal Bioanl Chem. 2015;408:1829–41. es_ES
dc.description.references Fogarty AC, Laage D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J Phys Chem B. 2014;118:7715–29. es_ES
dc.description.references Born B, Kim SJ, Ebbinghaus S, Gruebelebc M, Havenith M. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 2009;141:161–73. es_ES
dc.description.references Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y. Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol. 2012;2012:606195. es_ES
dc.description.references Boire G, Gendron M, Monast N, Bastin B, Ménard HA. Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein. Clin Exp Immunol. 1995;100:489–98. es_ES
dc.description.references Gazzaruso C, Montecucco CM, Geroldi D, Garzaniti A, Finardi G. Severe hypercalcemia and systemic lupus erythematosus. Joint Bone Spine. 2000;67:485–8. es_ES
dc.description.references Hassan AB, Lundberg IE, Isenberg D, Wahren-Herlenius M. Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand J Rheumatol. 2002;31:133–9. es_ES
dc.description.references Huang RY, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406:6541–58. es_ES
dc.description.references Yu F, Roy S, Arevalo E, Schaeck J, Wang J, Holte K, et al. Characterization of heparin-protein interaction by saturation transfer difference (STD) NMR. Anal Bioanal Chem. 2014;406:3079–89. es_ES
dc.description.references Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408. es_ES
dc.description.references Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun. 2006;9:173–87. es_ES
dc.description.references Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for Von Willebrand factor, couples physically and functionally to the Fc receptor gamma-chain, Fyn, and Lyn to activate human platelets. Blood. 1999;94:1648–56. es_ES
dc.description.references Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6:280–9. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem