- -

Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes

Show full item record

Vila, C.; Dharmaraj, NR.; Faubel, A.; Blay, G.; Cardona, ML.; Muñoz Roca, MDC.; Pedro, JR. (2019). Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes. European Journal of Organic Chemistry. (19):3040-3044. https://doi.org/10.1002/ejoc.201900328

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139151

Files in this item

Item Metadata

Title: Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes
Author: Vila, C. Dharmaraj, N. R. Faubel, A. Blay, G. Cardona, M. L. Muñoz Roca, María Del Carmen Pedro, J. R.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Hydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQ)(2)Pyr] catalyzed the regio-, diastereo-, and enantioselective addition of 4-substituted pyrazolones to isatin-derived nitroalkenes, providing a variety of ...[+]
Subjects: Asymmetric catalysis , Nitroalkenes , Pyrazolones , Organocatalysis , Nucleophilic substitution
Copyrigths: Cerrado
Source:
European Journal of Organic Chemistry. (issn: 1434-193X )
DOI: 10.1002/ejoc.201900328
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/ejoc.201900328
Project ID:
MICINN/RYC-2016-20187
MINECO/CTQ2017-84900-P
Description: "This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
Financial support from the Agencia Estatal de Investigacion (AEI, Spanish Government) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (CTQ2017-84900-P) is acknowledged. C. V. thanks the Spanish Government ...[+]
Type: Artículo

References

Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., & Isaji, M. (2008). Remogliflozin Etabonate, in a Novel Category of Selective Low-Affinity Sodium Glucose Cotransporter (SGLT2) Inhibitors, Exhibits Antidiabetic Efficacy in Rodent Models. Journal of Pharmacology and Experimental Therapeutics, 327(1), 268-276. doi:10.1124/jpet.108.140210

Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N., & Tada, N. (2006). Neuroprotective Effects of Edaravone: a Novel Free Radical Scavenger in Cerebrovascular Injury. CNS Drug Reviews, 12(1), 9-20. doi:10.1111/j.1527-3458.2006.00009.x

Yokoyama, N., Ritter, B., & Neubert, A. D. (1982). 2-Arylpyrazolo[4,3-c]quinolin-3-ones: a novel agonist, a partial agonist and an antagonist of benzodiazepines. Journal of Medicinal Chemistry, 25(4), 337-339. doi:10.1021/jm00346a002 [+]
Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., & Isaji, M. (2008). Remogliflozin Etabonate, in a Novel Category of Selective Low-Affinity Sodium Glucose Cotransporter (SGLT2) Inhibitors, Exhibits Antidiabetic Efficacy in Rodent Models. Journal of Pharmacology and Experimental Therapeutics, 327(1), 268-276. doi:10.1124/jpet.108.140210

Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N., & Tada, N. (2006). Neuroprotective Effects of Edaravone: a Novel Free Radical Scavenger in Cerebrovascular Injury. CNS Drug Reviews, 12(1), 9-20. doi:10.1111/j.1527-3458.2006.00009.x

Yokoyama, N., Ritter, B., & Neubert, A. D. (1982). 2-Arylpyrazolo[4,3-c]quinolin-3-ones: a novel agonist, a partial agonist and an antagonist of benzodiazepines. Journal of Medicinal Chemistry, 25(4), 337-339. doi:10.1021/jm00346a002

Fryer, R. I., Zhang, P., Rios, R., Gu, Z. Q., Basile, A. S., & Skolnick, P. (1993). Structure-activity relationship studies at benzodiazepine receptor (BZR): a comparison of the substituent effects of pyrazoloquinolinone analogs. Journal of Medicinal Chemistry, 36(11), 1669-1673. doi:10.1021/jm00063a017

Savini, L., Massarelli, P., Nencini, C., Pellerano, C., Biggio, G., Maciocco, A., … Carotti, A. (1998). High affinity central benzodiazepine receptor ligands: synthesis and structure–activity relationship studies of a new series of pyrazolo[4,3- c ]quinolin-3-ones. Bioorganic & Medicinal Chemistry, 6(4), 389-399. doi:10.1016/s0968-0896(97)10039-6

Caruso, F., Rossi, M., Tanski, J., Sartori, R., Sariego, R., Moya, S., … Pettinari, C. (2000). Synthesis, Structure, and Antitumor Activity of a Novel Tetranuclear Titanium Complex. Journal of Medicinal Chemistry, 43(20), 3665-3670. doi:10.1021/jm990539b

Ferlin, M. G., Chiarelotto, G., Dall’Acqua, S., Maciocco, E., Mascia, M. P., Pisu, M. G., & Biggio, G. (2005). Novel anellated pyrazoloquinolin-3-ones: synthesis and in vitro BZR activity. Bioorganic & Medicinal Chemistry, 13(10), 3531-3541. doi:10.1016/j.bmc.2005.02.042

Chauhan, P., Mahajan, S., & Enders, D. (2015). Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chemical Communications, 51(65), 12890-12907. doi:10.1039/c5cc04930j

Liu, S., Bao, X., & Wang, B. (2018). Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chemical Communications, 54(82), 11515-11529. doi:10.1039/c8cc06196c

Wang, Z., Yang, Z., Chen, D., Liu, X., Lin, L., & Feng, X. (2011). Highly Enantioselective Michael Addition of Pyrazolin-5-ones Catalyzed by Chiral Metal/N,N′-Dioxide Complexes: Metal-Directed Switch in Enantioselectivity. Angewandte Chemie, 123(21), 5030-5034. doi:10.1002/ange.201008256

Mazzanti, A., Calbet, T., Font-Bardia, M., Moyano, A., & Rios, R. (2012). Organocatalytic enantioselective pyrazol-3-one addition to maleimides: Reactivity and stereochemical course. Organic & Biomolecular Chemistry, 10(8), 1645. doi:10.1039/c2ob06553c

Tao, Z.-L., Zhang, W.-Q., Chen, D.-F., Adele, A., & Gong, L.-Z. (2013). Pd-Catalyzed Asymmetric Allylic Alkylation of Pyrazol-5-ones with Allylic Alcohols: The Role of the Chiral Phosphoric Acid in C–O Bond Cleavage and Stereocontrol. Journal of the American Chemical Society, 135(25), 9255-9258. doi:10.1021/ja402740q

Zhou, H., Wei, Z., Zhang, J., Yang, H., Xia, C., & Jiang, G. (2016). From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones. Angewandte Chemie International Edition, 56(4), 1077-1081. doi:10.1002/anie.201610473

Zhou, H., Wei, Z., Zhang, J., Yang, H., Xia, C., & Jiang, G. (2016). From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones. Angewandte Chemie, 129(4), 1097-1101. doi:10.1002/ange.201610473

Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie International Edition, 51(11), 2776-2779. doi:10.1002/anie.201109130

Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie, 124(11), 2830-2833. doi:10.1002/ange.201109130

Zhu, Z.-Q., Shen, Y., Liu, J.-X., Tao, J.-Y., & Shi, F. (2017). Enantioselective Direct α-Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo-Metal Cooperative Catalysis. Organic Letters, 19(7), 1542-1545. doi:10.1021/acs.orglett.7b00351

Yang, K., Bao, X., Yao, Y., Qu, J., & Wang, B. (2018). Iodine-mediated cross-dehydrogenative coupling of pyrazolones and alkenes. Organic & Biomolecular Chemistry, 16(34), 6275-6283. doi:10.1039/c8ob01645c

Trost, B., & Brennan, M. (2009). Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. Synthesis, 2009(18), 3003-3025. doi:10.1055/s-0029-1216975

Klein, J. E. M. N., & Taylor, R. J. K. (2011). Transition-Metal-Mediated Routes to 3,3-Disubstituted Oxindoles through Anilide Cyclisation. European Journal of Organic Chemistry, 2011(34), 6821-6841. doi:10.1002/ejoc.201100836

Zhou, J., Yu, J.-S., Zhou, F., & Liu, Y.-L. (2015). A Journey in the Catalytic Synthesis of 3-Substituted 3-Amino­oxindoles. Synlett, 26(18), 2491-2504. doi:10.1055/s-0034-1378873

Mei, G.-J., & Shi, F. (2018). Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chemical Communications, 54(50), 6607-6621. doi:10.1039/c8cc02364f

Zhou, L.-J., Zhang, Y.-C., Jiang, F., He, G., Yan, J., Lu, H., … Shi, F. (2016). Enantioselective Construction of Cyclic Enaminone-Based 3-Substituted 3-Amino-2-oxindole ScaffoldsviaCatalytic Asymmetric Additions of Isatin-Derived Imines. Advanced Synthesis & Catalysis, 358(19), 3069-3083. doi:10.1002/adsc.201600508

Jiang, F., Zhao, D., Yang, X., Yuan, F.-R., Mei, G.-J., & Shi, F. (2017). Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines. ACS Catalysis, 7(10), 6984-6989. doi:10.1021/acscatal.7b02279

Guo, W., Liu, Y., & Li, C. (2017). Asymmetric Catalytic 1,2-Hydroperoxidation of Isatin-Derived Ketimine with Hydrogen Peroxide in the Crowding Environment of PEGs. Organic Letters, 19(5), 1044-1047. doi:10.1021/acs.orglett.7b00032

Millemaggi, A., & Taylor, R. J. K. (2010). 3-Alkenyl-oxindoles: Natural Products, Pharmaceuticals, and Recent Synthetic Advances in Tandem/Telescoped Approaches. European Journal of Organic Chemistry, 2010(24), 4527-4547. doi:10.1002/ejoc.201000643

HATA, K., BABA, K., & KOZAWA, M. (1978). The structure of yellow pigment from the rhizomes of Cimicifuga dahurica Maxim. CHEMICAL & PHARMACEUTICAL BULLETIN, 26(7), 2279-2280. doi:10.1248/cpb.26.2279

Pedras, M. S. C., Chumala, P. B., & Suchy, M. (2003). Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry, 64(5), 949-956. doi:10.1016/s0031-9422(03)00441-2

Xu, L., Hao, Y., Wu, X., Yu, P., Zhu, G., & Hong, Z. (2013). Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurological Research, 35(6), 561-567. doi:10.1179/1743132813y.0000000157

Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G., & Tang, C. (1998). Synthesis and Biological Evaluations of 3-Substituted Indolin-2-ones:  A Novel Class of Tyrosine Kinase Inhibitors That Exhibit Selectivity toward Particular Receptor Tyrosine Kinases. Journal of Medicinal Chemistry, 41(14), 2588-2603. doi:10.1021/jm980123i

Bernasconi, C. F., & Rappoport, Z. (2009). Recent Advances in Our Mechanistic Understanding of SNV Reactions. Accounts of Chemical Research, 42(8), 993-1003. doi:10.1021/ar900048q

Zhang, H., Liu, Y., Chen, R., Xue, J., Li, Y., & Tang, Y. (2013). Metal-Free Coupling of 3-Alkenyl Oxoindoles by Nucleophilic Vinylic Substitution of Nitroolefins. Asian Journal of Organic Chemistry, 2(4), 307-310. doi:10.1002/ajoc.201300032

Vila, C., Amr, F. I., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - An Asian Journal, 11(10), 1532-1536. doi:10.1002/asia.201600325

Amr, F. I., Vila, C., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Alkylation of Pyrazol-3-ones with Isatin-Derived Ketimines: Stereocontrolled Construction of Vicinal Tetrasubstituted Stereocenters. Advanced Synthesis & Catalysis, 358(10), 1583-1588. doi:10.1002/adsc.201600036

CCDC 3fa The Cambridge Crystallographic Data Centre

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record