- -

Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vila, C. es_ES
dc.contributor.author Dharmaraj, N. R. es_ES
dc.contributor.author Faubel, A. es_ES
dc.contributor.author Blay, G. es_ES
dc.contributor.author Cardona, M. L. es_ES
dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Pedro, J. R. es_ES
dc.date.accessioned 2020-03-23T08:46:06Z
dc.date.available 2020-03-23T08:46:06Z
dc.date.issued 2019-05-26 es_ES
dc.identifier.issn 1434-193X es_ES
dc.identifier.uri http://hdl.handle.net/10251/139151
dc.description This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Hydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQ)(2)Pyr] catalyzed the regio-, diastereo-, and enantioselective addition of 4-substituted pyrazolones to isatin-derived nitroalkenes, providing a variety of chiral alkenylpyrazolone adducts containing a tetrasubstituted stereocenter bearing an oxindole moiety with excellent yields, regioselectivity, and diastereoselectivity, as well as a moderate enantioselectivity (up to 98 % yield, > 20:1 E/Z ratio dr and 78 % ee). The reaction harnesses a nitroalkene as an alkenylating agent through a Nucleophilic Vinylic Substitution (SNV) reaction. es_ES
dc.description.sponsorship Financial support from the Agencia Estatal de Investigacion (AEI, Spanish Government) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (CTQ2017-84900-P) is acknowledged. C. V. thanks the Spanish Government for Ramon y Cajal contract (RYC-2016-20187). Access to NMR, MS, and Xray facilities of the Servei Central de Suport a la Investigacio Experimental (SCSIE)-UV is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Asymmetric catalysis es_ES
dc.subject Nitroalkenes es_ES
dc.subject Pyrazolones es_ES
dc.subject Organocatalysis es_ES
dc.subject Nucleophilic substitution es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejoc.201900328 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2016-20187/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-84900-P/ES/REACCIONES DE ADICION ENANTIOSELECTIVAS MEDIANTE SISTEMAS MULTICATALITICOS. HERRAMIENTAS PARA LA SINTESIS EFICIENTE DE MOLECULAS CON ACTIVIDAD FARMACOLOGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Vila, C.; Dharmaraj, NR.; Faubel, A.; Blay, G.; Cardona, ML.; Muñoz Roca, MDC.; Pedro, JR. (2019). Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Dereved Nitroalkenes. European Journal of Organic Chemistry. (19):3040-3044. https://doi.org/10.1002/ejoc.201900328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejoc.201900328 es_ES
dc.description.upvformatpinicio 3040 es_ES
dc.description.upvformatpfin 3044 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\392182 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., & Isaji, M. (2008). Remogliflozin Etabonate, in a Novel Category of Selective Low-Affinity Sodium Glucose Cotransporter (SGLT2) Inhibitors, Exhibits Antidiabetic Efficacy in Rodent Models. Journal of Pharmacology and Experimental Therapeutics, 327(1), 268-276. doi:10.1124/jpet.108.140210 es_ES
dc.description.references Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N., & Tada, N. (2006). Neuroprotective Effects of Edaravone: a Novel Free Radical Scavenger in Cerebrovascular Injury. CNS Drug Reviews, 12(1), 9-20. doi:10.1111/j.1527-3458.2006.00009.x es_ES
dc.description.references Yokoyama, N., Ritter, B., & Neubert, A. D. (1982). 2-Arylpyrazolo[4,3-c]quinolin-3-ones: a novel agonist, a partial agonist and an antagonist of benzodiazepines. Journal of Medicinal Chemistry, 25(4), 337-339. doi:10.1021/jm00346a002 es_ES
dc.description.references Fryer, R. I., Zhang, P., Rios, R., Gu, Z. Q., Basile, A. S., & Skolnick, P. (1993). Structure-activity relationship studies at benzodiazepine receptor (BZR): a comparison of the substituent effects of pyrazoloquinolinone analogs. Journal of Medicinal Chemistry, 36(11), 1669-1673. doi:10.1021/jm00063a017 es_ES
dc.description.references Savini, L., Massarelli, P., Nencini, C., Pellerano, C., Biggio, G., Maciocco, A., … Carotti, A. (1998). High affinity central benzodiazepine receptor ligands: synthesis and structure–activity relationship studies of a new series of pyrazolo[4,3- c ]quinolin-3-ones. Bioorganic & Medicinal Chemistry, 6(4), 389-399. doi:10.1016/s0968-0896(97)10039-6 es_ES
dc.description.references Caruso, F., Rossi, M., Tanski, J., Sartori, R., Sariego, R., Moya, S., … Pettinari, C. (2000). Synthesis, Structure, and Antitumor Activity of a Novel Tetranuclear Titanium Complex. Journal of Medicinal Chemistry, 43(20), 3665-3670. doi:10.1021/jm990539b es_ES
dc.description.references Ferlin, M. G., Chiarelotto, G., Dall’Acqua, S., Maciocco, E., Mascia, M. P., Pisu, M. G., & Biggio, G. (2005). Novel anellated pyrazoloquinolin-3-ones: synthesis and in vitro BZR activity. Bioorganic & Medicinal Chemistry, 13(10), 3531-3541. doi:10.1016/j.bmc.2005.02.042 es_ES
dc.description.references Chauhan, P., Mahajan, S., & Enders, D. (2015). Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chemical Communications, 51(65), 12890-12907. doi:10.1039/c5cc04930j es_ES
dc.description.references Liu, S., Bao, X., & Wang, B. (2018). Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chemical Communications, 54(82), 11515-11529. doi:10.1039/c8cc06196c es_ES
dc.description.references Wang, Z., Yang, Z., Chen, D., Liu, X., Lin, L., & Feng, X. (2011). Highly Enantioselective Michael Addition of Pyrazolin-5-ones Catalyzed by Chiral Metal/N,N′-Dioxide Complexes: Metal-Directed Switch in Enantioselectivity. Angewandte Chemie, 123(21), 5030-5034. doi:10.1002/ange.201008256 es_ES
dc.description.references Mazzanti, A., Calbet, T., Font-Bardia, M., Moyano, A., & Rios, R. (2012). Organocatalytic enantioselective pyrazol-3-one addition to maleimides: Reactivity and stereochemical course. Organic & Biomolecular Chemistry, 10(8), 1645. doi:10.1039/c2ob06553c es_ES
dc.description.references Tao, Z.-L., Zhang, W.-Q., Chen, D.-F., Adele, A., & Gong, L.-Z. (2013). Pd-Catalyzed Asymmetric Allylic Alkylation of Pyrazol-5-ones with Allylic Alcohols: The Role of the Chiral Phosphoric Acid in C–O Bond Cleavage and Stereocontrol. Journal of the American Chemical Society, 135(25), 9255-9258. doi:10.1021/ja402740q es_ES
dc.description.references Zhou, H., Wei, Z., Zhang, J., Yang, H., Xia, C., & Jiang, G. (2016). From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones. Angewandte Chemie International Edition, 56(4), 1077-1081. doi:10.1002/anie.201610473 es_ES
dc.description.references Zhou, H., Wei, Z., Zhang, J., Yang, H., Xia, C., & Jiang, G. (2016). From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones. Angewandte Chemie, 129(4), 1097-1101. doi:10.1002/ange.201610473 es_ES
dc.description.references Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie International Edition, 51(11), 2776-2779. doi:10.1002/anie.201109130 es_ES
dc.description.references Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie, 124(11), 2830-2833. doi:10.1002/ange.201109130 es_ES
dc.description.references Zhu, Z.-Q., Shen, Y., Liu, J.-X., Tao, J.-Y., & Shi, F. (2017). Enantioselective Direct α-Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo-Metal Cooperative Catalysis. Organic Letters, 19(7), 1542-1545. doi:10.1021/acs.orglett.7b00351 es_ES
dc.description.references Yang, K., Bao, X., Yao, Y., Qu, J., & Wang, B. (2018). Iodine-mediated cross-dehydrogenative coupling of pyrazolones and alkenes. Organic & Biomolecular Chemistry, 16(34), 6275-6283. doi:10.1039/c8ob01645c es_ES
dc.description.references Trost, B., & Brennan, M. (2009). Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. Synthesis, 2009(18), 3003-3025. doi:10.1055/s-0029-1216975 es_ES
dc.description.references Klein, J. E. M. N., & Taylor, R. J. K. (2011). Transition-Metal-Mediated Routes to 3,3-Disubstituted Oxindoles through Anilide Cyclisation. European Journal of Organic Chemistry, 2011(34), 6821-6841. doi:10.1002/ejoc.201100836 es_ES
dc.description.references Zhou, J., Yu, J.-S., Zhou, F., & Liu, Y.-L. (2015). A Journey in the Catalytic Synthesis of 3-Substituted 3-Amino­oxindoles. Synlett, 26(18), 2491-2504. doi:10.1055/s-0034-1378873 es_ES
dc.description.references Mei, G.-J., & Shi, F. (2018). Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chemical Communications, 54(50), 6607-6621. doi:10.1039/c8cc02364f es_ES
dc.description.references Zhou, L.-J., Zhang, Y.-C., Jiang, F., He, G., Yan, J., Lu, H., … Shi, F. (2016). Enantioselective Construction of Cyclic Enaminone-Based 3-Substituted 3-Amino-2-oxindole ScaffoldsviaCatalytic Asymmetric Additions of Isatin-Derived Imines. Advanced Synthesis & Catalysis, 358(19), 3069-3083. doi:10.1002/adsc.201600508 es_ES
dc.description.references Jiang, F., Zhao, D., Yang, X., Yuan, F.-R., Mei, G.-J., & Shi, F. (2017). Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines. ACS Catalysis, 7(10), 6984-6989. doi:10.1021/acscatal.7b02279 es_ES
dc.description.references Guo, W., Liu, Y., & Li, C. (2017). Asymmetric Catalytic 1,2-Hydroperoxidation of Isatin-Derived Ketimine with Hydrogen Peroxide in the Crowding Environment of PEGs. Organic Letters, 19(5), 1044-1047. doi:10.1021/acs.orglett.7b00032 es_ES
dc.description.references Millemaggi, A., & Taylor, R. J. K. (2010). 3-Alkenyl-oxindoles: Natural Products, Pharmaceuticals, and Recent Synthetic Advances in Tandem/Telescoped Approaches. European Journal of Organic Chemistry, 2010(24), 4527-4547. doi:10.1002/ejoc.201000643 es_ES
dc.description.references HATA, K., BABA, K., & KOZAWA, M. (1978). The structure of yellow pigment from the rhizomes of Cimicifuga dahurica Maxim. CHEMICAL & PHARMACEUTICAL BULLETIN, 26(7), 2279-2280. doi:10.1248/cpb.26.2279 es_ES
dc.description.references Pedras, M. S. C., Chumala, P. B., & Suchy, M. (2003). Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry, 64(5), 949-956. doi:10.1016/s0031-9422(03)00441-2 es_ES
dc.description.references Xu, L., Hao, Y., Wu, X., Yu, P., Zhu, G., & Hong, Z. (2013). Tenidap, an agonist of the inwardly rectifying K+channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurological Research, 35(6), 561-567. doi:10.1179/1743132813y.0000000157 es_ES
dc.description.references Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G., & Tang, C. (1998). Synthesis and Biological Evaluations of 3-Substituted Indolin-2-ones:  A Novel Class of Tyrosine Kinase Inhibitors That Exhibit Selectivity toward Particular Receptor Tyrosine Kinases. Journal of Medicinal Chemistry, 41(14), 2588-2603. doi:10.1021/jm980123i es_ES
dc.description.references Bernasconi, C. F., & Rappoport, Z. (2009). Recent Advances in Our Mechanistic Understanding of SNV Reactions. Accounts of Chemical Research, 42(8), 993-1003. doi:10.1021/ar900048q es_ES
dc.description.references Zhang, H., Liu, Y., Chen, R., Xue, J., Li, Y., & Tang, Y. (2013). Metal-Free Coupling of 3-Alkenyl Oxoindoles by Nucleophilic Vinylic Substitution of Nitroolefins. Asian Journal of Organic Chemistry, 2(4), 307-310. doi:10.1002/ajoc.201300032 es_ES
dc.description.references Vila, C., Amr, F. I., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - An Asian Journal, 11(10), 1532-1536. doi:10.1002/asia.201600325 es_ES
dc.description.references Amr, F. I., Vila, C., Blay, G., Muñoz, M. C., & Pedro, J. R. (2016). Organocatalytic Enantioselective Alkylation of Pyrazol-3-ones with Isatin-Derived Ketimines: Stereocontrolled Construction of Vicinal Tetrasubstituted Stereocenters. Advanced Synthesis & Catalysis, 358(10), 1583-1588. doi:10.1002/adsc.201600036 es_ES
dc.description.references CCDC 3fa The Cambridge Crystallographic Data Centre es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem