- -

A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products

Show simple item record

Files in this item

dc.contributor.author Prgomet, I. es_ES
dc.contributor.author Gonçalves, B. es_ES
dc.contributor.author Domínguez-Perles, R. es_ES
dc.contributor.author Pascual-Seva, Nuria es_ES
dc.contributor.author Barros, A.I.R.N.A. es_ES
dc.date.accessioned 2020-03-23T08:46:07Z
dc.date.available 2020-03-23T08:46:07Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 1936-9751 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139152
dc.description.abstract [EN] Response surface methodology (RSM) was chosen to optimize the influence of solvent pH and relative proportion, and time of extraction, regarding polyphenols and radical scavenging capacity of almond (Prunus dulcis (Mill.) D.A. Webb) by-products (hulls, shells, and skins) from an almond orchard located in the North of Portugal (Lousa, Torre de Moncorvo). The RSM model was developed according to a Box-Behnken design and the optimal conditions were set for pH 6.5, 250.0 min, and 90.0% of food quality ethanol, pH 1.5, 235.0 min, and 63.0% ethanol, and pH 1.5, 250.0 min, and 56.0% ethanol for hulls, shells, and skins, respectively. The optimal conditions were obtained applying spectrophotometric techniques because of their versatility, while the chromatographic profile of extracts obtained when applied the optimal conditions indicated the presence of 3-caffeoylquinic acid, naringenin-7-O-glucoside, kaempferol-3-O-glucoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, and isorhamnetin aglycone in hulls and skins. The model designed allowed the optimization of the phenolic extraction from almond by-products, demonstrating the potential of these materials as sources of antioxidant compounds with potential industrial, pharmaceutical, and food applications. es_ES
dc.description.sponsorship IP received financial support from the FCT-Portuguese Foundation for Science and Technology (SFRH/BD/52539/2014), under the Doctoral Programme BAgricultural Production Chains-from fork to farm<^> (PD/00122/2012). RDP was supported by a Postdoctoral Contract (Juan de la Cierva de Incorporacion ICJI-2015-25373) from the Ministry of Economy, Industry and Competitiveness of Spain. This work is supported by the National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2019. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation FCT/SFRH/BD/52539/2014 es_ES
dc.relation FCT/PD/00122/2012 es_ES
dc.relation FCT/UID/AGR/04033/2019 es_ES
dc.relation MICINN/ICJI-2015-25373 es_ES
dc.relation.ispartof Food Analytical Methods es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Almonds es_ES
dc.subject By-products es_ES
dc.subject Phenolic extraction es_ES
dc.subject Optimization process es_ES
dc.subject Antioxidants es_ES
dc.subject RSM es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12161-019-01540-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. (2019). A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products. Food Analytical Methods. 12(9):2009-2024. https://doi.org/10.1007/s12161-019-01540-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12161-019-01540-5 es_ES
dc.description.upvformatpinicio 2009 es_ES
dc.description.upvformatpfin 2024 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\397258 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.relation.references Aires A, Carvalho R, Saavedra MJ (2016) Valorization of solid wastes from chestnut industry processing: extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Manag 48:457–464. https://doi.org/10.1016/j.wasman.2015.11.019 es_ES
dc.relation.references Amendola D, De Faveri DM, Spigno G (2010) Grape marc phenolics: extraction kinetics, quality and stability of extracts. J Food Eng 97:384–392. https://doi.org/10.1016/j.jfoodeng.2009.10.033 es_ES
dc.relation.references Barros A, Gironés-Vilaplana A, Teixeira A, Collado-González J, Moreno DA, Gil-Izquierdo A, Rosa E, Domínguez-Perles R (2014) Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: a comparative study. Food Res Int 65:375–384. https://doi.org/10.1016/j.foodres.2014.07.021 es_ES
dc.relation.references Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024 es_ES
dc.relation.references Bolling BW, Dolnikowski G, Blumberg JB, Chen CYO (2010) Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem 122(3):819–825. https://doi.org/10.1016/j.foodchem.2010.03.068 es_ES
dc.relation.references Bottone A, Montoro P, Masullo M, Pizza C, Piacente S (2018) Metabolomics and antioxidant activity of the leaves of Prunus dulcis Mill. (Italian cvs. Toritto and Avola). J Pharm Biomed Anal 158:54–65. https://doi.org/10.1016/j.jpba.2018.05.018 es_ES
dc.relation.references Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475. https://doi.org/10.1080/00401706.1960.10489912 es_ES
dc.relation.references Brito C, Dinis LT, Moutinho-Pereira J, Correia C (2019) Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci Hortic 250:310–316. https://doi.org/10.1016/j.scienta.2019.02.070 es_ES
dc.relation.references Carrasco-Del Amor AM, Collado-González J, Aguayo E, Guy A, Galano JM, Durand T, Gil-Izquierdo A (2015) Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Adv 5(63):51233–51241. https://doi.org/10.1039/C5RA07803B es_ES
dc.relation.references Chethan S, Malleshi NG (2007) Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem 105:862–870. https://doi.org/10.1016/j.foodchem.2007.02.012 es_ES
dc.relation.references Chew KK, Khoo MZ, Ng SY et al (2011) Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int Food Res J 18:1427–1435. https://doi.org/10.1016/j.jep.2007.07.023 es_ES
dc.relation.references Čolić SD, Fotirić Akšić MM, Lazarević KB, Zec GN, Gašić UM, Dabić Zagorac DČ, Natić MM (2017) Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem 234:455–463. https://doi.org/10.1016/j.foodchem.2017.05.006 es_ES
dc.relation.references Davis PA, Iwahashi CK (2001) Whole almonds and almond fractions reduce aberrant crypt foci in a rat model of colon carcinogenesis. 165:27–33. https://doi.org/10.1016/S0304-3835(01)00425-6 es_ES
dc.relation.references Domínguez-Perles R, Teixeira AI, Rosa E, Barros AI (2014) Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chem 164:339–346. https://doi.org/10.1016/j.foodchem.2014.05.020 es_ES
dc.relation.references Garrido I, Monagas M, Gómez-Cordovés C, Bartolomé B (2008) Polyphenols and antioxidant properties of almond skins: influence of industrial processing. J Food Sci 73:C106–C115. https://doi.org/10.1111/j.1750-3841.2007.00637.x es_ES
dc.relation.references Harrison K, Were LM (2007) Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chem 102:932–937. https://doi.org/10.1016/j.foodchem.2006.06.034 es_ES
dc.relation.references Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res Atmos 113. https://doi.org/10.1029/2008JD010201 es_ES
dc.relation.references Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT (2011) Deployment of response surface methodology to optimize recovery of grape (Vitis vinifera) stem and seed polyphenols. Procedia Food Sci 1:1686–1693. https://doi.org/10.1016/j.profoo.2011.09.249 es_ES
dc.relation.references Koch W, Baj T, Kukula-koch W et al (2015) Dietary intake of specific phenolic compounds and their effect on the antioxidant activity of daily food rations. 869–876. https://doi.org/10.1515/chem-2015-0100 es_ES
dc.relation.references Librán CM, Mayor L, Garcia-Castello EM, Vidal-Brotons D (2013) Polyphenol extraction from grape wastes: solvent and pH effect. Agric Sci 04:56–62. https://doi.org/10.4236/as.2013.49B010 es_ES
dc.relation.references Machado N, Domínguez-Perles R, Ramos A, Rosa EAS, Barros AIRNA (2017) Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing. J Sci Food Agric 97:4285–4294. https://doi.org/10.1002/jsfa.8251 es_ES
dc.relation.references Malovaná S, Garcia Montelongo FJ, Perez JP, Rodriguez-Delgado MA (2001) Optimisation of sample preparation for the determination of trans-resveratrol and other polyphenolic compounds in wines by high performance liquid chromatography. Anal Chim Acta 428:245–253. https://doi.org/10.1016/S0003-2670(00)01231-9 es_ES
dc.relation.references Mandalari G, Bisignano C, D’Arrigo M, Ginestra G, Arena A, Tomaino A, Wickham MSJ (2010a) Antimicrobial potential of polyphenols extracted from almond skins. Lett Appl Microbiol 51:83–89. https://doi.org/10.1111/j.1472-765X.2010.02862.x es_ES
dc.relation.references Mandalari G, Faulks RM, Bisignano C, Waldron KW, Narbad A, Wickham MSJ (2010b) In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communis L.). FEMS Microbiol Lett 304:116–122. https://doi.org/10.1111/j.15746968.2010.01898.x es_ES
dc.relation.references Mandalari G, Tomaino A, Rich GT, Lo Curto R, Arcoraci T, Martorana M, Bisignano C, Saija A, Parker ML, Waldron KW, Wickham MSJ (2010c) Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chem 122:1083–1088. https://doi.org/10.1016/j.foodchem.2010.03.079 es_ES
dc.relation.references Mandalari G, Bisignano C, Genovese T, Mazzon E, Wickham MSJ, Paterniti I, Cuzzocrea S (2011) Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. Int Immunopharmacol 11:915–924. https://doi.org/10.1016/j.intimp.2011.02.003 es_ES
dc.relation.references Meshkini A (2016) Acetone extract of almond hulls provides protection against oxidative damage and membrane protein degradation. JAMS J Acupunct Meridian Stud 9:134–142. https://doi.org/10.1016/j.jams.2015.10.001 es_ES
dc.relation.references Milbury PE, Chen CV, Dolnikowski GG, Blumberg JB (2006) Determination of flavonoids and phenolics and their distribution in almonds. J Agricult Food Chem 54:5027–5033. https://doi.org/10.1021/jf0603937 es_ES
dc.relation.references Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002 es_ES
dc.relation.references Odabaş Hİ, Koca I (2016) Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Ind Crop Prod 91:114–124. https://doi.org/10.1016/j.indcrop.2016.05.033 es_ES
dc.relation.references Pasqualone A, Laddomada B, Spina A, Todaro A, Guzmàn C, Summo C, Mita G, Giannone V (2018) Almond by-products: extraction and characterization of phenolic compounds and evaluation of their potential use in composite dough with wheat flour. LWT - Food Sci Technol 89:299–306. https://doi.org/10.1016/j.lwt.2017.10.066 es_ES
dc.relation.references Pinelo M, Rubilar M, Sineiro J, Núñez MJ (2004) Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem 85:267–273. https://doi.org/10.1016/j.foodchem.2003.06.020 es_ES
dc.relation.references Pinelo M, Rubilar M, Jerez M, Sineiro J, Núñez MJ (2005) Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem 53:2111–2117. https://doi.org/10.1021/jf0488110 es_ES
dc.relation.references Pirayesh H, Khazaeian A (2012) Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Compos Part B Eng 43:1475–1479. https://doi.org/10.1016/j.compositesb.2011.06.008 es_ES
dc.relation.references Pompeu DR, Silva EM, Rogez H (2009) Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Bioresour Technol 100:6076–6082. https://doi.org/10.1016/j.biortech.2009.03.083 es_ES
dc.relation.references Prgomet I, Gonçalves B, Domínguez-Perles R, Pascual-Seva N, Barros A (2017) Valorization challenges to almond residues: phytochemical composition and functional application. Molecules 22. https://doi.org/10.3390/molecules22101774 es_ES
dc.relation.references Prgomet I, Gonçalves B, Domínguez-Perles R, Pascual-Seva N, Barros A (2019) Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Ind Crop Prod 132:186–196. https://doi.org/10.1016/j.indcrop.2019.02.024 es_ES
dc.relation.references Ros E (2010) Health benefits of nut consumption. Nutrients 2:652–682. https://doi.org/10.3390/nu2070652 es_ES
dc.relation.references Rubilar M, Pinelo M, Shene C, Sineiro J, Nuñez MJ (2007) Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: almond hulls and grape pomace. J Agric Food Chem 55:10101–10109. https://doi.org/10.1021/jf0721996 es_ES
dc.relation.references Ruenroengklin N, Zhong J, Duan X, Yang B, Li J, Jiang Y (2008) Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. Int J Mol Sci 9:1333–1341. https://doi.org/10.3390/ijms9071333 es_ES
dc.relation.references Sarwar S, Anwar F, Raziq S et al (2012) Antioxidant characteristics of different solvent extracts from almond (Prunus dulcis L.) shell. J Med Plants Res 6:3311–3316. https://doi.org/10.5897/JMPR11.1723 es_ES
dc.relation.references Smeriglio A, Mandalari G, Bisignano C, Filocamo A, Barreca D, Bellocco E, Trombetta D (2016) Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Ind Crop Prod 83:283–293. https://doi.org/10.1016/j.indcrop.2015.11.089 es_ES
dc.relation.references Takeoka GR, Dao LT (2003) Antioxidant constituents of almond [Prunus dulcis (Mill.) D.A. Webb] hulls. J Agric Food Chem 51:496–501. https://doi.org/10.1021/jf020660i es_ES
dc.relation.references Takeoka G, Dao L, Teranishi R, Wong R, Flessa S, Harden L, Edwards R (2000) Identification of three triterpenoids in almond hulls. J Agric Food Chem 48:3437–3439. https://doi.org/10.1021/jf9908289 es_ES
dc.relation.references Vadivel V, Kunyanga CN, Biesalski HKMD (2012) Health benefits of nut consumption with special reference to body weight control. Nutrition 28:1089–1097. https://doi.org/10.1016/j.nut.2012.01.004 es_ES
dc.relation.references Valdés A, Vidal L, Beltrán A, Canals A, Garrigós MC (2015) Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): a multivariate analysis approach. J Agric Food Chem 63:5395–5402. https://doi.org/10.1021/acs.jafc.5b01011 es_ES
dc.relation.references Wijeratne SSK, Amarowicz R, Shahidi F (2006) Antioxidant activity of almonds and their by-products in food model systems. JAOCS, J Am Oil Chem Soc 83:223–230. https://doi.org/10.1007/s11746-006-1197-8 es_ES


This item appears in the following Collection(s)

Show simple item record