- -

Photo-click chemistry to create nucleic acids dextran-based microarrays

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Photo-click chemistry to create nucleic acids dextran-based microarrays

Show full item record

Díaz-Betancor, Z.; Bañuls Polo, M.; Maquieira Catala, A. (2019). Photo-click chemistry to create nucleic acids dextran-based microarrays. Analytical and Bioanalytical Chemistry. 411(25):6745-6754. https://doi.org/10.1007/s00216-019-02050-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139153

Files in this item

Item Metadata

Title: Photo-click chemistry to create nucleic acids dextran-based microarrays
Author: Díaz-Betancor, Zeneida Bañuls Polo, María-José Maquieira Catala, Angel
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] In the literature, there are reports of the utilization of various hydrogels to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high-performance microarrays. ...[+]
Subjects: Fluorescence microarray , Hydrogel , Dextran , Thiol-acrylate click chemistry , Nucleic acids
Copyrigths: Reserva de todos los derechos
Source:
Analytical and Bioanalytical Chemistry. (issn: 1618-2642 )
DOI: 10.1007/s00216-019-02050-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00216-019-02050-3
Project ID:
AEI/CTQ2016-75749-R
Description: The final publication is available at link.springer.com
Thanks:
Funding from MINECO through the project BIHOLOG CTQ/2016/75749-R is acknowledged.
Type: Artículo

References

Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53. https://doi.org/10.1146/annurev.bioeng.4.020702.153438 .

Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108:109–39. https://doi.org/10.1021/cr0684467 .

Uttamchandani M, Neo JL, Ong BNZ, Moochhala S. Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol. 2009;27:53–61. https://doi.org/10.1016/J.TIBTECH.2008.09.004 . [+]
Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53. https://doi.org/10.1146/annurev.bioeng.4.020702.153438 .

Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108:109–39. https://doi.org/10.1021/cr0684467 .

Uttamchandani M, Neo JL, Ong BNZ, Moochhala S. Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol. 2009;27:53–61. https://doi.org/10.1016/J.TIBTECH.2008.09.004 .

Yu X, Schneiderhan-Marra N, Joos TO. Protein microarrays for personalized medicine. Clin Chem. 2010;56:376–87. https://doi.org/10.1373/clinchem.2009.137158 .

North SH, Taitt CR. Immobilization of biomolecular probes for arrays and assay: critical aspects of biointerfaces. In: Chemoselective and bioorthogonal ligation reactions. Weinheim: Wiley-VCH; 2017. p. 459–95.

Nimse S, Song K, Sonawane M, Sayyed D, Kim T. Immobilization techniques for microarray: challenges and applications. Sensors. 2014;14:22208–29. https://doi.org/10.3390/s141222208 .

Cardenas-Benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-Chapa SO. Review: Covalent functionalization of carbon nanomaterials for biosensor applications: an update. J Electrochem Soc. 2018;165:B103–17. https://doi.org/10.1149/2.0381803jes .

Qu Z, Xu H, Gu H. Synthesis and biomedical applications of poly((meth)acrylic acid) brushes. ACS Appl Mater Interfaces. 2015;7:14537–51. https://doi.org/10.1021/acsami.5b02912 .

Oh SJ, Hong BJ, Choi KY, Park JW. Surface modification for DNA and protein microarrays. OMICS. 2006;10:327–43. https://doi.org/10.1089/omi.2006.10.327 .

Luderer F, Walschus U. Immobilization of oligonucleotides for biochemical sensing by self-assembled monolayers: thiol–organic bonding on gold and silanization on silica surfaces. In: Immobilisation of DNA on chips I. Berlin: Springer; 2005. p. 37–56.

Caminade A-M. Dendrimers as biological sensors. In: Dendrimers. Chichester: Wiley; 2011. p. 375–92.

Kiat NJ, Simeon F, Phon TH, Ajikumar PK. DNA-directed assembly microarray for protein and small molecule inhibitor screening. Totowa, NJ: Humana; 2011. p. 127–40.

Basinska T. Reactions leading to controlled hydrophilicity/hydrophobicity of surfaces. Curr Org Chem. 2017;21(24):2479–501. https://doi.org/10.2174/1385272821666170428123013 .

Weinrich D, Köhn M, Jonkheijm P, Westerlind U, Dehmelt L, Engelkamp H, et al. Preparation of biomolecule microstructures and microarrays by thiol-ene photoimmobilization. ChemBioChem. 2010;11:235–47. https://doi.org/10.1002/cbic.200900559 .

Wendeln C, Rinnen S, Schulz C, Kaufmann T, Arlinghaus HF, Ravoo BJ. Rapid preparation of multifunctional surfaces for orthogonal ligation by microcontact chemistry. Chem Eur J. 2012;18:5880–8. https://doi.org/10.1002/chem.201103422 .

Makaraviciute A, Ramanaviciene A. Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron. 2013;50:460–71. https://doi.org/10.1016/j.bios.2013.06.060 .

Bañuls M-J, Jiménez-Meneses P, Meyer A, Vasseur J-J, Morvan F, Escorihuela J, et al. Improved performance of DNA microarray multiplex hybridization using probes anchored at several points by thiol–ene or thiol–yne coupling chemistry. Bioconjug Chem. 2017;28:496–506. https://doi.org/10.1021/acs.bioconjchem.6b00624 .

Neumann K, Conde-González A, Owens M, Venturato A, Zhang Y, Geng J, et al. An approach to the high-throughput fabrication of glycopolymer microarrays through thiol–ene chemistry. Macromolecules. 2017;50:6026–31. https://doi.org/10.1021/acs.macromol.7b00952 .

Gupta N, Lin BF, Campos LM, Dimitriou MD, Hikita ST, Treat ND, et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nat Chem. 2010;2:138–45. https://doi.org/10.1038/nchem.478 .

Rubina AY, Dementieva EI, Stomakhin AA, Darii EL, Pan’kov SV, Barsky VE, et al. Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques. 2003;34:1008–22. https://doi.org/10.2144/03345rr01 .

Varshosaz J. Dextran conjugates in drug delivery. Expert Opin Drug Deliv. 2012;9:509–23. https://doi.org/10.1517/17425247.2012.673580 .

Desmet C, Blum LJ, Marquette CA. High-throughput multiplexed competitive immunoassay for pollutants sensing in water. Anal Chem. 2012;84:10267–76. https://doi.org/10.1021/ac302133u .

Moschallski M, Evers A, Brandstetter T, Rühe J. Sensitivity of microarray based immunoassays using surface-attached hydrogels. Anal Chim Acta. 2013;781:72–9. https://doi.org/10.1016/j.aca.2013.04.013 .

Beyer A, Pollok S, Berg A, Weber K, Popp J. Easy daylight fabricated hydrogel Array for colorimetric DNA analysis. Macromol Biosci. 2014;14:889–98. https://doi.org/10.1002/mabi.201300487 .

Alonso R, Jiménez-Meneses P, García-Rupérez J, Bañuls M-J, Maquieira Á. Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chem Commun. 2018;54:6144–7. https://doi.org/10.1039/C8CC01369A .

Escorihuela J, Bañuls MJ, Grijalvo S, Eritja R, Puchades R, Maquieira Á. Direct covalent attachment of DNA microarrays by rapid thiol-ene “click” chemistry. Bioconjug Chem. 2014;25:618–27.

Escorihuela J, Bañuls M-J, Puchades R, Maquieira Á. Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J Mater Chem B. 2014;2:8510–7. https://doi.org/10.1039/C4TB01108B .

Escorihuela J, Bañuls MJ, Puchades R, Maquieira Á. Development of oligonucleotide microarrays onto Si-based surfaces via thioether linkage mediated by UV irradiation. Bioconjug Chem. 2012;23:2121–8.

Dondoni A. The emergence of thiol–ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed. 2008;47:8995–7. https://doi.org/10.1002/anie.200802516 .

Mira D, Llorente R, Morais S, Puchades R, Maquieira A, Marti J. High-throughput screening of surface-enhanced fluorescence on industrial standard digital recording media. Proc SPIE. 2004;5617:364–73.

van Dijk-Wolthuis WNE, Franssen O, Talsma H, van Steenbergen MJ, Kettenes-van den Bosch JJ, Hennink WE. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules. 1995;28:6317–22. https://doi.org/10.1021/ma00122a044 .

Pirrung MC. How to make a DNA chip. Angew Chem Int Ed. 2002;41:1276–89. https://doi.org/10.1002/1521-3773(20020415)41:8<1276::AID-ANIE1276>3.0.CO;2-2 .

Wang C, Jia X-M, Jiang C, Zhuang G-N, Yan Q, Xiao S-J. DNA microarray fabricated on poly(acrylic acid) brushes-coated porous silicon by in situ rolling circle amplification. Analyst. 2012;137:4539. https://doi.org/10.1039/c2an35417a .

Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, et al. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol. 2014;192:252–9. https://doi.org/10.1016/j.juro.2014.01.107 .

[-]

This item appears in the following Collection(s)

Show full item record