- -

Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT

Show full item record

Fuentes, I.; Mostazo-Lopez, MJ.; Kelemen, Z.; Compañ Moreno, V.; Andrio, A.; Morallon, E.; Cazorla-Amoros, D.... (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry - A European Journal. 25(63):14308-14319. https://doi.org/10.1002/chem.201902708

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139242

Files in this item

Item Metadata

Title: Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT
Author: Fuentes, I. Mostazo-Lopez, Maria Jose Kelemen, Zsolt Compañ Moreno, Vicente Andrio, Andreu Morallon, Emilia Cazorla-Amoros, Diego Viñas, Clara Teixidor, Françesc
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer ...[+]
Subjects: Conducting organic polymers , PEDOT , Electronic conductivity , Ionic conductivity , Capacitance
Copyrigths: Reserva de todos los derechos
Source:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201902708
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/chem.201902708
Project ID:
info:eu-repo/grantAgreement/EC/H2020/751587/EU
MINECO/CTQ2016-75150-R
GC/2014/SGR/149
MINECO/ENE2015-69203-R
Description: "This is the peer reviewed version of the following article: I. Fuentes, M. J. Mostazo-López, Z. Kelemen, V. Compañ, A. Andrio, E. Morallón, D. Cazorla-Amorós, C. Viñas, F. Teixidor, Chem. Eur. J. 2019, 25, 14308. , which has been published in final form at ttps://doi.org/10.1002/chem.201902708. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
We gratefully acknowledge the Spanish Ministerio de Economa y Competitividad (MINECO; projects ENE/2015-69203-R and CTQ2016-75150-R) and the Generalitat de Catalunya (2014/SGR/149) for financial support. I.F. is enrolled ...[+]
Type: Artículo

References

Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 4(7), 2206. doi:10.1039/c3py21118e

Hempenius, M. A., Cirmi, C., Savio, F. L., Song, J., & Vancso, G. J. (2010). Poly(ferrocenylsilane) Gels and Hydrogels with Redox-Controlled Actuation. Macromolecular Rapid Communications, 31(9-10), 772-783. doi:10.1002/marc.200900908

Mazurowski, M., Gallei, M., Li, J., Didzoleit, H., Stühn, B., & Rehahn, M. (2012). Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules, 45(22), 8970-8981. doi:10.1021/ma3020195 [+]
Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 4(7), 2206. doi:10.1039/c3py21118e

Hempenius, M. A., Cirmi, C., Savio, F. L., Song, J., & Vancso, G. J. (2010). Poly(ferrocenylsilane) Gels and Hydrogels with Redox-Controlled Actuation. Macromolecular Rapid Communications, 31(9-10), 772-783. doi:10.1002/marc.200900908

Mazurowski, M., Gallei, M., Li, J., Didzoleit, H., Stühn, B., & Rehahn, M. (2012). Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules, 45(22), 8970-8981. doi:10.1021/ma3020195

Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angewandte Chemie International Edition, 51(32), 7898-7921. doi:10.1002/anie.201200310

Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Funktionale Blockcopolymere: nanostrukturierte Materialien mit neuen Anwendungsmöglichkeiten. Angewandte Chemie, 124(32), 8020-8044. doi:10.1002/ange.201200310

Staff, R. H., Gallei, M., Mazurowski, M., Rehahn, M., Berger, R., Landfester, K., & Crespy, D. (2012). Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 6(10), 9042-9049. doi:10.1021/nn3031589

Sui, X., Hempenius, M. A., & Vancso, G. J. (2012). Redox-Active Cross-Linkable Poly(ionic liquid)s. Journal of the American Chemical Society, 134(9), 4023-4025. doi:10.1021/ja211662k

Tonhauser, C., Alkan, A., Schömer, M., Dingels, C., Ritz, S., Mailänder, V., … Wurm, F. R. (2013). Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules, 46(3), 647-655. doi:10.1021/ma302241w

Tonhauser, C., Mazurowski, M., Rehahn, M., Gallei, M., & Frey, H. (2012). Water-Soluble Poly(vinylferrocene)-b-Poly(ethylene oxide) Diblock and Miktoarm Star Polymers. Macromolecules, 45(8), 3409-3418. doi:10.1021/ma3000048

Atta, N. F., Galal, A., Ali, S. M., & Hassan, S. H. (2015). Electrochemistry and detection of dopamine at a poly(3,4-ethylenedioxythiophene) electrode modified with ferrocene and cobaltocene. Ionics, 21(8), 2371-2382. doi:10.1007/s11581-015-1417-z

Boxall, D. L., & Osteryoung, R. A. (2004). Switching Potentials and Conductivity of Polypyrrole Films Prepared in the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of The Electrochemical Society, 151(2), E41. doi:10.1149/1.1634275

Ren, L., Zhang, J., Hardy, C. G., Ma, S., & Tang, C. (2012). Cobaltocenium-Containing Block Copolymers: Ring-Opening Metathesis Polymerization, Self-Assembly and Precursors for Template Synthesis of Inorganic Nanoparticles. Macromolecular Rapid Communications, 33(6-7), 510-516. doi:10.1002/marc.201100732

Crespo, E., Gentil, S., Viñas, C., & Teixidor, F. (2007). Post-Overoxidation Self-Recovery of Polypyrrole Doped with a Metallacarborane Anion. The Journal of Physical Chemistry C, 111(49), 18381-18386. doi:10.1021/jp0755443

Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w

Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c

Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8

Fabre, B., Hao, E., LeJeune, Z. M., Amuhaya, E. K., Barrière, F., Garno, J. C., & Vicente, M. G. H. (2010). Polythiophenes Containing In-Chain Cobaltabisdicarbollide Centers. ACS Applied Materials & Interfaces, 2(3), 691-702. doi:10.1021/am9007424

Kumar, R. S., & Arunachalam, S. (2006). Synthesis, characterization and DNA binding studies of a polymer-cobalt(III) complex containing the 2,2′-bipyridyl ligand. Polyhedron, 25(16), 3113-3117. doi:10.1016/j.poly.2006.05.043

Maghami, M., Farzaneh, F., Simpson, J., & Moazeni, A. (2014). Synthesis, characterization and crystal structure of a cobalt(II) coordination polymer with 2,4,6-tris(2-pyridyl)-1,3,5-triazine and its use as an epoxidation catalyst. Polyhedron, 73, 22-29. doi:10.1016/j.poly.2014.02.012

Xuan, Y., Sandberg, M., Berggren, M., & Crispin, X. (2012). An all-polymer-air PEDOT battery. Organic Electronics, 13(4), 632-637. doi:10.1016/j.orgel.2011.12.018

Zhan, L., Song, Z., Zhang, J., Tang, J., Zhan, H., Zhou, Y., & Zhan, C. (2008). PEDOT: Cathode active material with high specific capacity in novel electrolyte system. Electrochimica Acta, 53(28), 8319-8323. doi:10.1016/j.electacta.2008.06.053

Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., & Béguin, F. (2006). Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 153(2), 413-418. doi:10.1016/j.jpowsour.2005.05.030

Kang, H., Liu, R., Sun, H., Zhen, J., Li, Q., & Huang, Y. (2011). Osmium Bipyridine-Containing Redox Polymers Based on Cellulose and Their Reversible Redox Activity. The Journal of Physical Chemistry B, 116(1), 55-62. doi:10.1021/jp2083488

Döbbelin, M., Marcilla, R., Pozo-Gonzalo, C., & Mecerreyes, D. (2010). Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. Journal of Materials Chemistry, 20(36), 7613. doi:10.1039/c0jm00114g

Hwang, J., Schwendeman, I., Ihas, B. C., Clark, R. J., Cornick, M., Nikolou, M., … Tanner, D. B. (2011). In situmeasurements of the optical absorption of dioxythiophene-based conjugated polymers. Physical Review B, 83(19). doi:10.1103/physrevb.83.195121

Otero, T. F., & Martinez, J. G. (2013). Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors. J. Mater. Chem. B, 1(1), 26-38. doi:10.1039/c2tb00176d

Plesse, C., Vidal, F., Teyssié, D., & Chevrot, C. (2010). Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chemical Communications, 46(17), 2910. doi:10.1039/c001289k

Rivard, E. (2012). Inorganic and organometallic polymers. Annual Reports Section «A» (Inorganic Chemistry), 108, 315. doi:10.1039/c2ic90001g

Pickup, P. G. (1999). Conjugated metallopolymers. Redox polymers with interacting metal based redox sites. Journal of Materials Chemistry, 9(8), 1641-1653. doi:10.1039/a902244i

Mantione, D., del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D. (2017). Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9(12), 354. doi:10.3390/polym9080354

David, V., Viñas, C., & Teixidor, F. (2006). Poly(3,4-ethylenedioxythiophene) doped with a non-extrudable metallacarborane anion electroactive during synthesis. Polymer, 47(13), 4694-4702. doi:10.1016/j.polymer.2006.04.017

Matějíček, P., Cígler, P., Procházka, K., & Král, V. (2006). Molecular Assembly of Metallacarboranes in Water:  Light Scattering and Microscopy Study. Langmuir, 22(2), 575-581. doi:10.1021/la052201s

Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410

Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie, 123(23), 5410-5412. doi:10.1002/ange.201100410

Housecroft, C. E. (2015). Carboranes as guests, counterions and linkers in coordination polymers and networks. Journal of Organometallic Chemistry, 798, 218-228. doi:10.1016/j.jorganchem.2015.04.047

Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a

Zaulet, A., Teixidor, F., Bauduin, P., Diat, O., Hirva, P., Ofori, A., & Viñas, C. (2018). Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. Journal of Organometallic Chemistry, 865, 214-225. doi:10.1016/j.jorganchem.2018.03.023

Richardi, J., Fries, P. H., & Krienke, H. (1998). The solvation of ions in acetonitrile and acetone: A molecular Ornstein–Zernike study. The Journal of Chemical Physics, 108(10), 4079-4089. doi:10.1063/1.475805

Seo, D. M., Boyle, P. D., Borodin, O., & Henderson, W. A. (2012). Li+ cation coordination by acetonitrile—insights from crystallography. RSC Advances, 2(21), 8014. doi:10.1039/c2ra21290k

Spångberg, D., & Hermansson, K. (2004). The solvation of Li+ and Na+ in acetonitrile from ab initio-derived many-body ion–solvent potentials. Chemical Physics, 300(1-3), 165-176. doi:10.1016/j.chemphys.2004.01.011

Kalish, N. B.-M., Shandalov, E., Kharlanov, V., Pines, D., & Pines, E. (2011). Apparent Stoichiometry of Water in Proton Hydration and Proton Dehydration Reactions in CH3CN/H2O Solutions. The Journal of Physical Chemistry A, 115(16), 4063-4075. doi:10.1021/jp110873t

D. Spanberg Cation Solvation in Water and Acetonitrile from Theoretical Calculations Ph.D. Thesis Uppsala University 2003.

Chantooni, M. K., & Kolthoff, I. M. (1967). Hydration of Ions in Acetonitrile. Journal of the American Chemical Society, 89(7), 1582-1586. doi:10.1021/ja00983a008

Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie International Edition, 55(36), 10600-10605. doi:10.1002/anie.201602523

Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie, 128(36), 10758-10763. doi:10.1002/ange.201602523

Kim, J. Y., Jung, J. H., Lee, D. E., & Joo, J. (2002). Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126(2-3), 311-316. doi:10.1016/s0379-6779(01)00576-8

Döbbelin, M., Marcilla, R., Salsamendi, M., Pozo-Gonzalo, C., Carrasco, P. M., Pomposo, J. A., & Mecerreyes, D. (2007). Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chemistry of Materials, 19(9), 2147-2149. doi:10.1021/cm070398z

Mohd Said, S., Rahman, S. M., Long, B. D., Balamurugan, S., Soin, N., & Rahman, M. A. (2017). The effect of nitric acid (HNO3) treatment on the electrical conductivity and stability of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films. Journal of Polymer Engineering, 37(2), 163-168. doi:10.1515/polyeng-2015-0535

Yi, Z., Zhao, Y., Li, P., Ho, K., Blozowski, N., Walker, G., … Lu, Z. (2018). The effect of tannic acids on the electrical conductivity of PEDOT:PSS Films. Applied Surface Science, 448, 583-588. doi:10.1016/j.apsusc.2018.04.168

Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971

Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4

Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b

[-]

This item appears in the following Collection(s)

Show full item record