Mostrar el registro sencillo del ítem
dc.contributor.author | Fuentes, I. | es_ES |
dc.contributor.author | Mostazo-Lopez, Maria Jose | es_ES |
dc.contributor.author | Kelemen, Zsolt | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.contributor.author | Andrio, Andreu | es_ES |
dc.contributor.author | Morallon, Emilia | es_ES |
dc.contributor.author | Cazorla-Amoros, Diego | es_ES |
dc.contributor.author | Viñas, Clara | es_ES |
dc.contributor.author | Teixidor, Françesc | es_ES |
dc.date.accessioned | 2020-03-24T06:14:22Z | |
dc.date.available | 2020-03-24T06:14:22Z | |
dc.date.issued | 2019-11-13 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139242 | |
dc.description | "This is the peer reviewed version of the following article: I. Fuentes, M. J. Mostazo-López, Z. Kelemen, V. Compañ, A. Andrio, E. Morallón, D. Cazorla-Amorós, C. Viñas, F. Teixidor, Chem. Eur. J. 2019, 25, 14308. , which has been published in final form at ttps://doi.org/10.1002/chem.201902708. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2B9H11)(2)](-) was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+, Na+, K+, Li+, and H+ as cations. Notably, with the [Co(C2B9H11)(2)](-) anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+, K+, and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2B9H11)(2)](-) for Cs+ and H+, and 3:1 EDOT/[Co(C2B9H11)(2)](-) for Na+, K+, and Li+. The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance. | es_ES |
dc.description.sponsorship | We gratefully acknowledge the Spanish Ministerio de Economa y Competitividad (MINECO; projects ENE/2015-69203-R and CTQ2016-75150-R) and the Generalitat de Catalunya (2014/SGR/149) for financial support. I.F. is enrolled in the Ph.D. program of the UAB. Z.K. is grateful for the general support of the European Union's Horizon 2020 Research and Innovation Program through a Marie Sklodowska-Curie grant (MSCA-IF-2016-751587). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Conducting organic polymers | es_ES |
dc.subject | PEDOT | es_ES |
dc.subject | Electronic conductivity | es_ES |
dc.subject | Ionic conductivity | es_ES |
dc.subject | Capacitance | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201902708 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/751587/EU/Tuning both the photoluminescence and conductive properties of new COP materials/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-75150-R/ES/MATERIALES BASADOS EN CLUSTERES DE BORO PARA ENERGIA SOSTENIBLE Y APLICACIONES MEDIOAMBIENTALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Fuentes, I.; Mostazo-Lopez, MJ.; Kelemen, Z.; Compañ Moreno, V.; Andrio, A.; Morallon, E.; Cazorla-Amoros, D.... (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry - A European Journal. 25(63):14308-14319. https://doi.org/10.1002/chem.201902708 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201902708 | es_ES |
dc.description.upvformatpinicio | 14308 | es_ES |
dc.description.upvformatpfin | 14319 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 63 | es_ES |
dc.relation.pasarela | S\402564 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 4(7), 2206. doi:10.1039/c3py21118e | es_ES |
dc.description.references | Hempenius, M. A., Cirmi, C., Savio, F. L., Song, J., & Vancso, G. J. (2010). Poly(ferrocenylsilane) Gels and Hydrogels with Redox-Controlled Actuation. Macromolecular Rapid Communications, 31(9-10), 772-783. doi:10.1002/marc.200900908 | es_ES |
dc.description.references | Mazurowski, M., Gallei, M., Li, J., Didzoleit, H., Stühn, B., & Rehahn, M. (2012). Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules, 45(22), 8970-8981. doi:10.1021/ma3020195 | es_ES |
dc.description.references | Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angewandte Chemie International Edition, 51(32), 7898-7921. doi:10.1002/anie.201200310 | es_ES |
dc.description.references | Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Funktionale Blockcopolymere: nanostrukturierte Materialien mit neuen Anwendungsmöglichkeiten. Angewandte Chemie, 124(32), 8020-8044. doi:10.1002/ange.201200310 | es_ES |
dc.description.references | Staff, R. H., Gallei, M., Mazurowski, M., Rehahn, M., Berger, R., Landfester, K., & Crespy, D. (2012). Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 6(10), 9042-9049. doi:10.1021/nn3031589 | es_ES |
dc.description.references | Sui, X., Hempenius, M. A., & Vancso, G. J. (2012). Redox-Active Cross-Linkable Poly(ionic liquid)s. Journal of the American Chemical Society, 134(9), 4023-4025. doi:10.1021/ja211662k | es_ES |
dc.description.references | Tonhauser, C., Alkan, A., Schömer, M., Dingels, C., Ritz, S., Mailänder, V., … Wurm, F. R. (2013). Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules, 46(3), 647-655. doi:10.1021/ma302241w | es_ES |
dc.description.references | Tonhauser, C., Mazurowski, M., Rehahn, M., Gallei, M., & Frey, H. (2012). Water-Soluble Poly(vinylferrocene)-b-Poly(ethylene oxide) Diblock and Miktoarm Star Polymers. Macromolecules, 45(8), 3409-3418. doi:10.1021/ma3000048 | es_ES |
dc.description.references | Atta, N. F., Galal, A., Ali, S. M., & Hassan, S. H. (2015). Electrochemistry and detection of dopamine at a poly(3,4-ethylenedioxythiophene) electrode modified with ferrocene and cobaltocene. Ionics, 21(8), 2371-2382. doi:10.1007/s11581-015-1417-z | es_ES |
dc.description.references | Boxall, D. L., & Osteryoung, R. A. (2004). Switching Potentials and Conductivity of Polypyrrole Films Prepared in the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of The Electrochemical Society, 151(2), E41. doi:10.1149/1.1634275 | es_ES |
dc.description.references | Ren, L., Zhang, J., Hardy, C. G., Ma, S., & Tang, C. (2012). Cobaltocenium-Containing Block Copolymers: Ring-Opening Metathesis Polymerization, Self-Assembly and Precursors for Template Synthesis of Inorganic Nanoparticles. Macromolecular Rapid Communications, 33(6-7), 510-516. doi:10.1002/marc.201100732 | es_ES |
dc.description.references | Crespo, E., Gentil, S., Viñas, C., & Teixidor, F. (2007). Post-Overoxidation Self-Recovery of Polypyrrole Doped with a Metallacarborane Anion. The Journal of Physical Chemistry C, 111(49), 18381-18386. doi:10.1021/jp0755443 | es_ES |
dc.description.references | Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w | es_ES |
dc.description.references | Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c | es_ES |
dc.description.references | Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8 | es_ES |
dc.description.references | Fabre, B., Hao, E., LeJeune, Z. M., Amuhaya, E. K., Barrière, F., Garno, J. C., & Vicente, M. G. H. (2010). Polythiophenes Containing In-Chain Cobaltabisdicarbollide Centers. ACS Applied Materials & Interfaces, 2(3), 691-702. doi:10.1021/am9007424 | es_ES |
dc.description.references | Kumar, R. S., & Arunachalam, S. (2006). Synthesis, characterization and DNA binding studies of a polymer-cobalt(III) complex containing the 2,2′-bipyridyl ligand. Polyhedron, 25(16), 3113-3117. doi:10.1016/j.poly.2006.05.043 | es_ES |
dc.description.references | Maghami, M., Farzaneh, F., Simpson, J., & Moazeni, A. (2014). Synthesis, characterization and crystal structure of a cobalt(II) coordination polymer with 2,4,6-tris(2-pyridyl)-1,3,5-triazine and its use as an epoxidation catalyst. Polyhedron, 73, 22-29. doi:10.1016/j.poly.2014.02.012 | es_ES |
dc.description.references | Xuan, Y., Sandberg, M., Berggren, M., & Crispin, X. (2012). An all-polymer-air PEDOT battery. Organic Electronics, 13(4), 632-637. doi:10.1016/j.orgel.2011.12.018 | es_ES |
dc.description.references | Zhan, L., Song, Z., Zhang, J., Tang, J., Zhan, H., Zhou, Y., & Zhan, C. (2008). PEDOT: Cathode active material with high specific capacity in novel electrolyte system. Electrochimica Acta, 53(28), 8319-8323. doi:10.1016/j.electacta.2008.06.053 | es_ES |
dc.description.references | Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., & Béguin, F. (2006). Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 153(2), 413-418. doi:10.1016/j.jpowsour.2005.05.030 | es_ES |
dc.description.references | Kang, H., Liu, R., Sun, H., Zhen, J., Li, Q., & Huang, Y. (2011). Osmium Bipyridine-Containing Redox Polymers Based on Cellulose and Their Reversible Redox Activity. The Journal of Physical Chemistry B, 116(1), 55-62. doi:10.1021/jp2083488 | es_ES |
dc.description.references | Döbbelin, M., Marcilla, R., Pozo-Gonzalo, C., & Mecerreyes, D. (2010). Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. Journal of Materials Chemistry, 20(36), 7613. doi:10.1039/c0jm00114g | es_ES |
dc.description.references | Hwang, J., Schwendeman, I., Ihas, B. C., Clark, R. J., Cornick, M., Nikolou, M., … Tanner, D. B. (2011). In situmeasurements of the optical absorption of dioxythiophene-based conjugated polymers. Physical Review B, 83(19). doi:10.1103/physrevb.83.195121 | es_ES |
dc.description.references | Otero, T. F., & Martinez, J. G. (2013). Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors. J. Mater. Chem. B, 1(1), 26-38. doi:10.1039/c2tb00176d | es_ES |
dc.description.references | Plesse, C., Vidal, F., Teyssié, D., & Chevrot, C. (2010). Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chemical Communications, 46(17), 2910. doi:10.1039/c001289k | es_ES |
dc.description.references | Rivard, E. (2012). Inorganic and organometallic polymers. Annual Reports Section «A» (Inorganic Chemistry), 108, 315. doi:10.1039/c2ic90001g | es_ES |
dc.description.references | Pickup, P. G. (1999). Conjugated metallopolymers. Redox polymers with interacting metal based redox sites. Journal of Materials Chemistry, 9(8), 1641-1653. doi:10.1039/a902244i | es_ES |
dc.description.references | Mantione, D., del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D. (2017). Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9(12), 354. doi:10.3390/polym9080354 | es_ES |
dc.description.references | David, V., Viñas, C., & Teixidor, F. (2006). Poly(3,4-ethylenedioxythiophene) doped with a non-extrudable metallacarborane anion electroactive during synthesis. Polymer, 47(13), 4694-4702. doi:10.1016/j.polymer.2006.04.017 | es_ES |
dc.description.references | Matějíček, P., Cígler, P., Procházka, K., & Král, V. (2006). Molecular Assembly of Metallacarboranes in Water: Light Scattering and Microscopy Study. Langmuir, 22(2), 575-581. doi:10.1021/la052201s | es_ES |
dc.description.references | Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410 | es_ES |
dc.description.references | Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie, 123(23), 5410-5412. doi:10.1002/ange.201100410 | es_ES |
dc.description.references | Housecroft, C. E. (2015). Carboranes as guests, counterions and linkers in coordination polymers and networks. Journal of Organometallic Chemistry, 798, 218-228. doi:10.1016/j.jorganchem.2015.04.047 | es_ES |
dc.description.references | Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a | es_ES |
dc.description.references | Zaulet, A., Teixidor, F., Bauduin, P., Diat, O., Hirva, P., Ofori, A., & Viñas, C. (2018). Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. Journal of Organometallic Chemistry, 865, 214-225. doi:10.1016/j.jorganchem.2018.03.023 | es_ES |
dc.description.references | Richardi, J., Fries, P. H., & Krienke, H. (1998). The solvation of ions in acetonitrile and acetone: A molecular Ornstein–Zernike study. The Journal of Chemical Physics, 108(10), 4079-4089. doi:10.1063/1.475805 | es_ES |
dc.description.references | Seo, D. M., Boyle, P. D., Borodin, O., & Henderson, W. A. (2012). Li+ cation coordination by acetonitrile—insights from crystallography. RSC Advances, 2(21), 8014. doi:10.1039/c2ra21290k | es_ES |
dc.description.references | Spångberg, D., & Hermansson, K. (2004). The solvation of Li+ and Na+ in acetonitrile from ab initio-derived many-body ion–solvent potentials. Chemical Physics, 300(1-3), 165-176. doi:10.1016/j.chemphys.2004.01.011 | es_ES |
dc.description.references | Kalish, N. B.-M., Shandalov, E., Kharlanov, V., Pines, D., & Pines, E. (2011). Apparent Stoichiometry of Water in Proton Hydration and Proton Dehydration Reactions in CH3CN/H2O Solutions. The Journal of Physical Chemistry A, 115(16), 4063-4075. doi:10.1021/jp110873t | es_ES |
dc.description.references | D. Spanberg Cation Solvation in Water and Acetonitrile from Theoretical Calculations Ph.D. Thesis Uppsala University 2003. | es_ES |
dc.description.references | Chantooni, M. K., & Kolthoff, I. M. (1967). Hydration of Ions in Acetonitrile. Journal of the American Chemical Society, 89(7), 1582-1586. doi:10.1021/ja00983a008 | es_ES |
dc.description.references | Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie International Edition, 55(36), 10600-10605. doi:10.1002/anie.201602523 | es_ES |
dc.description.references | Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie, 128(36), 10758-10763. doi:10.1002/ange.201602523 | es_ES |
dc.description.references | Kim, J. Y., Jung, J. H., Lee, D. E., & Joo, J. (2002). Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126(2-3), 311-316. doi:10.1016/s0379-6779(01)00576-8 | es_ES |
dc.description.references | Döbbelin, M., Marcilla, R., Salsamendi, M., Pozo-Gonzalo, C., Carrasco, P. M., Pomposo, J. A., & Mecerreyes, D. (2007). Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chemistry of Materials, 19(9), 2147-2149. doi:10.1021/cm070398z | es_ES |
dc.description.references | Mohd Said, S., Rahman, S. M., Long, B. D., Balamurugan, S., Soin, N., & Rahman, M. A. (2017). The effect of nitric acid (HNO3) treatment on the electrical conductivity and stability of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films. Journal of Polymer Engineering, 37(2), 163-168. doi:10.1515/polyeng-2015-0535 | es_ES |
dc.description.references | Yi, Z., Zhao, Y., Li, P., Ho, K., Blozowski, N., Walker, G., … Lu, Z. (2018). The effect of tannic acids on the electrical conductivity of PEDOT:PSS Films. Applied Surface Science, 448, 583-588. doi:10.1016/j.apsusc.2018.04.168 | es_ES |
dc.description.references | Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971 | es_ES |
dc.description.references | Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 | es_ES |
dc.description.references | Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |