- -

Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes, I. es_ES
dc.contributor.author Mostazo-Lopez, Maria Jose es_ES
dc.contributor.author Kelemen, Zsolt es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Morallon, Emilia es_ES
dc.contributor.author Cazorla-Amoros, Diego es_ES
dc.contributor.author Viñas, Clara es_ES
dc.contributor.author Teixidor, Françesc es_ES
dc.date.accessioned 2020-03-24T06:14:22Z
dc.date.available 2020-03-24T06:14:22Z
dc.date.issued 2019-11-13 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139242
dc.description "This is the peer reviewed version of the following article: I. Fuentes, M. J. Mostazo-López, Z. Kelemen, V. Compañ, A. Andrio, E. Morallón, D. Cazorla-Amorós, C. Viñas, F. Teixidor, Chem. Eur. J. 2019, 25, 14308. , which has been published in final form at ttps://doi.org/10.1002/chem.201902708. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2B9H11)(2)](-) was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+, Na+, K+, Li+, and H+ as cations. Notably, with the [Co(C2B9H11)(2)](-) anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+, K+, and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2B9H11)(2)](-) for Cs+ and H+, and 3:1 EDOT/[Co(C2B9H11)(2)](-) for Na+, K+, and Li+. The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance. es_ES
dc.description.sponsorship We gratefully acknowledge the Spanish Ministerio de Economa y Competitividad (MINECO; projects ENE/2015-69203-R and CTQ2016-75150-R) and the Generalitat de Catalunya (2014/SGR/149) for financial support. I.F. is enrolled in the Ph.D. program of the UAB. Z.K. is grateful for the general support of the European Union's Horizon 2020 Research and Innovation Program through a Marie Sklodowska-Curie grant (MSCA-IF-2016-751587). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conducting organic polymers es_ES
dc.subject PEDOT es_ES
dc.subject Electronic conductivity es_ES
dc.subject Ionic conductivity es_ES
dc.subject Capacitance es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201902708 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/751587/EU/Tuning both the photoluminescence and conductive properties of new COP materials/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-75150-R/ES/MATERIALES BASADOS EN CLUSTERES DE BORO PARA ENERGIA SOSTENIBLE Y APLICACIONES MEDIOAMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Fuentes, I.; Mostazo-Lopez, MJ.; Kelemen, Z.; Compañ Moreno, V.; Andrio, A.; Morallon, E.; Cazorla-Amoros, D.... (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry - A European Journal. 25(63):14308-14319. https://doi.org/10.1002/chem.201902708 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201902708 es_ES
dc.description.upvformatpinicio 14308 es_ES
dc.description.upvformatpfin 14319 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 63 es_ES
dc.relation.pasarela S\402564 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 4(7), 2206. doi:10.1039/c3py21118e es_ES
dc.description.references Hempenius, M. A., Cirmi, C., Savio, F. L., Song, J., & Vancso, G. J. (2010). Poly(ferrocenylsilane) Gels and Hydrogels with Redox-Controlled Actuation. Macromolecular Rapid Communications, 31(9-10), 772-783. doi:10.1002/marc.200900908 es_ES
dc.description.references Mazurowski, M., Gallei, M., Li, J., Didzoleit, H., Stühn, B., & Rehahn, M. (2012). Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules, 45(22), 8970-8981. doi:10.1021/ma3020195 es_ES
dc.description.references Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angewandte Chemie International Edition, 51(32), 7898-7921. doi:10.1002/anie.201200310 es_ES
dc.description.references Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Funktionale Blockcopolymere: nanostrukturierte Materialien mit neuen Anwendungsmöglichkeiten. Angewandte Chemie, 124(32), 8020-8044. doi:10.1002/ange.201200310 es_ES
dc.description.references Staff, R. H., Gallei, M., Mazurowski, M., Rehahn, M., Berger, R., Landfester, K., & Crespy, D. (2012). Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 6(10), 9042-9049. doi:10.1021/nn3031589 es_ES
dc.description.references Sui, X., Hempenius, M. A., & Vancso, G. J. (2012). Redox-Active Cross-Linkable Poly(ionic liquid)s. Journal of the American Chemical Society, 134(9), 4023-4025. doi:10.1021/ja211662k es_ES
dc.description.references Tonhauser, C., Alkan, A., Schömer, M., Dingels, C., Ritz, S., Mailänder, V., … Wurm, F. R. (2013). Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules, 46(3), 647-655. doi:10.1021/ma302241w es_ES
dc.description.references Tonhauser, C., Mazurowski, M., Rehahn, M., Gallei, M., & Frey, H. (2012). Water-Soluble Poly(vinylferrocene)-b-Poly(ethylene oxide) Diblock and Miktoarm Star Polymers. Macromolecules, 45(8), 3409-3418. doi:10.1021/ma3000048 es_ES
dc.description.references Atta, N. F., Galal, A., Ali, S. M., & Hassan, S. H. (2015). Electrochemistry and detection of dopamine at a poly(3,4-ethylenedioxythiophene) electrode modified with ferrocene and cobaltocene. Ionics, 21(8), 2371-2382. doi:10.1007/s11581-015-1417-z es_ES
dc.description.references Boxall, D. L., & Osteryoung, R. A. (2004). Switching Potentials and Conductivity of Polypyrrole Films Prepared in the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of The Electrochemical Society, 151(2), E41. doi:10.1149/1.1634275 es_ES
dc.description.references Ren, L., Zhang, J., Hardy, C. G., Ma, S., & Tang, C. (2012). Cobaltocenium-Containing Block Copolymers: Ring-Opening Metathesis Polymerization, Self-Assembly and Precursors for Template Synthesis of Inorganic Nanoparticles. Macromolecular Rapid Communications, 33(6-7), 510-516. doi:10.1002/marc.201100732 es_ES
dc.description.references Crespo, E., Gentil, S., Viñas, C., & Teixidor, F. (2007). Post-Overoxidation Self-Recovery of Polypyrrole Doped with a Metallacarborane Anion. The Journal of Physical Chemistry C, 111(49), 18381-18386. doi:10.1021/jp0755443 es_ES
dc.description.references Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w es_ES
dc.description.references Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c es_ES
dc.description.references Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8 es_ES
dc.description.references Fabre, B., Hao, E., LeJeune, Z. M., Amuhaya, E. K., Barrière, F., Garno, J. C., & Vicente, M. G. H. (2010). Polythiophenes Containing In-Chain Cobaltabisdicarbollide Centers. ACS Applied Materials & Interfaces, 2(3), 691-702. doi:10.1021/am9007424 es_ES
dc.description.references Kumar, R. S., & Arunachalam, S. (2006). Synthesis, characterization and DNA binding studies of a polymer-cobalt(III) complex containing the 2,2′-bipyridyl ligand. Polyhedron, 25(16), 3113-3117. doi:10.1016/j.poly.2006.05.043 es_ES
dc.description.references Maghami, M., Farzaneh, F., Simpson, J., & Moazeni, A. (2014). Synthesis, characterization and crystal structure of a cobalt(II) coordination polymer with 2,4,6-tris(2-pyridyl)-1,3,5-triazine and its use as an epoxidation catalyst. Polyhedron, 73, 22-29. doi:10.1016/j.poly.2014.02.012 es_ES
dc.description.references Xuan, Y., Sandberg, M., Berggren, M., & Crispin, X. (2012). An all-polymer-air PEDOT battery. Organic Electronics, 13(4), 632-637. doi:10.1016/j.orgel.2011.12.018 es_ES
dc.description.references Zhan, L., Song, Z., Zhang, J., Tang, J., Zhan, H., Zhou, Y., & Zhan, C. (2008). PEDOT: Cathode active material with high specific capacity in novel electrolyte system. Electrochimica Acta, 53(28), 8319-8323. doi:10.1016/j.electacta.2008.06.053 es_ES
dc.description.references Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., & Béguin, F. (2006). Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 153(2), 413-418. doi:10.1016/j.jpowsour.2005.05.030 es_ES
dc.description.references Kang, H., Liu, R., Sun, H., Zhen, J., Li, Q., & Huang, Y. (2011). Osmium Bipyridine-Containing Redox Polymers Based on Cellulose and Their Reversible Redox Activity. The Journal of Physical Chemistry B, 116(1), 55-62. doi:10.1021/jp2083488 es_ES
dc.description.references Döbbelin, M., Marcilla, R., Pozo-Gonzalo, C., & Mecerreyes, D. (2010). Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. Journal of Materials Chemistry, 20(36), 7613. doi:10.1039/c0jm00114g es_ES
dc.description.references Hwang, J., Schwendeman, I., Ihas, B. C., Clark, R. J., Cornick, M., Nikolou, M., … Tanner, D. B. (2011). In situmeasurements of the optical absorption of dioxythiophene-based conjugated polymers. Physical Review B, 83(19). doi:10.1103/physrevb.83.195121 es_ES
dc.description.references Otero, T. F., & Martinez, J. G. (2013). Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors. J. Mater. Chem. B, 1(1), 26-38. doi:10.1039/c2tb00176d es_ES
dc.description.references Plesse, C., Vidal, F., Teyssié, D., & Chevrot, C. (2010). Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chemical Communications, 46(17), 2910. doi:10.1039/c001289k es_ES
dc.description.references Rivard, E. (2012). Inorganic and organometallic polymers. Annual Reports Section «A» (Inorganic Chemistry), 108, 315. doi:10.1039/c2ic90001g es_ES
dc.description.references Pickup, P. G. (1999). Conjugated metallopolymers. Redox polymers with interacting metal based redox sites. Journal of Materials Chemistry, 9(8), 1641-1653. doi:10.1039/a902244i es_ES
dc.description.references Mantione, D., del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D. (2017). Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9(12), 354. doi:10.3390/polym9080354 es_ES
dc.description.references David, V., Viñas, C., & Teixidor, F. (2006). Poly(3,4-ethylenedioxythiophene) doped with a non-extrudable metallacarborane anion electroactive during synthesis. Polymer, 47(13), 4694-4702. doi:10.1016/j.polymer.2006.04.017 es_ES
dc.description.references Matějíček, P., Cígler, P., Procházka, K., & Král, V. (2006). Molecular Assembly of Metallacarboranes in Water:  Light Scattering and Microscopy Study. Langmuir, 22(2), 575-581. doi:10.1021/la052201s es_ES
dc.description.references Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410 es_ES
dc.description.references Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie, 123(23), 5410-5412. doi:10.1002/ange.201100410 es_ES
dc.description.references Housecroft, C. E. (2015). Carboranes as guests, counterions and linkers in coordination polymers and networks. Journal of Organometallic Chemistry, 798, 218-228. doi:10.1016/j.jorganchem.2015.04.047 es_ES
dc.description.references Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a es_ES
dc.description.references Zaulet, A., Teixidor, F., Bauduin, P., Diat, O., Hirva, P., Ofori, A., & Viñas, C. (2018). Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. Journal of Organometallic Chemistry, 865, 214-225. doi:10.1016/j.jorganchem.2018.03.023 es_ES
dc.description.references Richardi, J., Fries, P. H., & Krienke, H. (1998). The solvation of ions in acetonitrile and acetone: A molecular Ornstein–Zernike study. The Journal of Chemical Physics, 108(10), 4079-4089. doi:10.1063/1.475805 es_ES
dc.description.references Seo, D. M., Boyle, P. D., Borodin, O., & Henderson, W. A. (2012). Li+ cation coordination by acetonitrile—insights from crystallography. RSC Advances, 2(21), 8014. doi:10.1039/c2ra21290k es_ES
dc.description.references Spångberg, D., & Hermansson, K. (2004). The solvation of Li+ and Na+ in acetonitrile from ab initio-derived many-body ion–solvent potentials. Chemical Physics, 300(1-3), 165-176. doi:10.1016/j.chemphys.2004.01.011 es_ES
dc.description.references Kalish, N. B.-M., Shandalov, E., Kharlanov, V., Pines, D., & Pines, E. (2011). Apparent Stoichiometry of Water in Proton Hydration and Proton Dehydration Reactions in CH3CN/H2O Solutions. The Journal of Physical Chemistry A, 115(16), 4063-4075. doi:10.1021/jp110873t es_ES
dc.description.references D. Spanberg Cation Solvation in Water and Acetonitrile from Theoretical Calculations Ph.D. Thesis Uppsala University 2003. es_ES
dc.description.references Chantooni, M. K., & Kolthoff, I. M. (1967). Hydration of Ions in Acetonitrile. Journal of the American Chemical Society, 89(7), 1582-1586. doi:10.1021/ja00983a008 es_ES
dc.description.references Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie International Edition, 55(36), 10600-10605. doi:10.1002/anie.201602523 es_ES
dc.description.references Dahms, F., Costard, R., Pines, E., Fingerhut, B. P., Nibbering, E. T. J., & Elsaesser, T. (2016). The Hydrated Excess Proton in the Zundel Cation H5 O2 + : The Role of Ultrafast Solvent Fluctuations. Angewandte Chemie, 128(36), 10758-10763. doi:10.1002/ange.201602523 es_ES
dc.description.references Kim, J. Y., Jung, J. H., Lee, D. E., & Joo, J. (2002). Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126(2-3), 311-316. doi:10.1016/s0379-6779(01)00576-8 es_ES
dc.description.references Döbbelin, M., Marcilla, R., Salsamendi, M., Pozo-Gonzalo, C., Carrasco, P. M., Pomposo, J. A., & Mecerreyes, D. (2007). Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chemistry of Materials, 19(9), 2147-2149. doi:10.1021/cm070398z es_ES
dc.description.references Mohd Said, S., Rahman, S. M., Long, B. D., Balamurugan, S., Soin, N., & Rahman, M. A. (2017). The effect of nitric acid (HNO3) treatment on the electrical conductivity and stability of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) thin films. Journal of Polymer Engineering, 37(2), 163-168. doi:10.1515/polyeng-2015-0535 es_ES
dc.description.references Yi, Z., Zhao, Y., Li, P., Ho, K., Blozowski, N., Walker, G., … Lu, Z. (2018). The effect of tannic acids on the electrical conductivity of PEDOT:PSS Films. Applied Surface Science, 448, 583-588. doi:10.1016/j.apsusc.2018.04.168 es_ES
dc.description.references Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971 es_ES
dc.description.references Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 es_ES
dc.description.references Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem