- -

Symplectic propagators for the Kepler problem with time-dependent mass

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Symplectic propagators for the Kepler problem with time-dependent mass

Show full item record

Bader, P.; Blanes Zamora, S.; Casas, F.; Kopylov, N. (2019). Symplectic propagators for the Kepler problem with time-dependent mass. Celestial Mechanics and Dynamical Astronomy. 131(6):1-19. https://doi.org/10.1007/s10569-019-9903-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139358

Files in this item

Item Metadata

Title: Symplectic propagators for the Kepler problem with time-dependent mass
Author: Bader, Philipp Blanes Zamora, Sergio Casas, Fernando Kopylov, Nikita
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] New numerical integrators specifically designed for solving the two-body gravitational problem with a time-varying mass are presented. They can be seen as a generalization of commutator-free quasi-Magnus exponential ...[+]
Subjects: Kepler problem , Time-dependent mass , Symplectic integrators , Hamiltonian systems
Copyrigths: Reserva de todos los derechos
Source:
Celestial Mechanics and Dynamical Astronomy. (issn: 0923-2958 )
DOI: 10.1007/s10569-019-9903-7
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10569-019-9903-7
Project ID:
GV/GRISOLIA/2015/A/137
MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD/MTM2016-77660-P
Thanks:
This work has been funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). Kopylov has also been partly supported by Grant GRISOLIA/2015/A/137 from the Generalitat ...[+]
Type: Artículo

References

Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978)

Adams, F., Anderson, K., Bloch, A.: Evolution of planetary systems with time-dependent stellar mass-loss. Month. Not. R. Astronom. Soc. 432, 438–454 (2013)

Alvermann, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011) [+]
Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978)

Adams, F., Anderson, K., Bloch, A.: Evolution of planetary systems with time-dependent stellar mass-loss. Month. Not. R. Astronom. Soc. 432, 438–454 (2013)

Alvermann, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011)

Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1989)

Blanes, S.: Time-average on the numerical integration of non-autonomous differential equations. SIAM J. Numer. Anal. 56, 2513–2536 (2018)

Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton (2016)

Blanes, S., Casas, F., Ros, J.: Processing symplectic methods for near-integrable Hamiltonian systems. Celest. Mech. Dyn. Astron. 77, 17–35 (2000)

Blanes, S., Casas, F., Oteo, J., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009)

Blanes, S., Casas, F., Thalhammer, M.: High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220, 243–262 (2017)

Blanes, S., Casas, F., Thalhammer, M.: Convergence analysis of high-order commutator-free quasi Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38, 743–778 (2018)

Danby, J.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond (1988)

El-Saftawy, M., El-Salam, F.A.: Second-order theory for the two-body problem with varying mass including periastron effect. Nonlinear Dyn. 88, 1723–1732 (2017)

Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116, 141–174 (2013)

Hadjidemetriou, J.: Secular variation of mass and the evolution of binary systems. In: Kopal, Z. (ed.) Advances in Astronomy and Astrophysics, vol. 5, pp. 131–188. Academic Press, New York (1967)

Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edn. Springer, Berlin (1993)

Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edn. Springer, Berlin (2006)

Laskar, J.: Analytical framework in Poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability and Chaos in $$N$$-Body Dynamical Systems, NATO ASI, pp. 93–114. Plenum Press, New York (1991)

Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

Li, L.S.: Secular influence of the evolution of orbits of near-Earth asteroids induced by temporary variation of G and solar mass-loss. Month. Not. R. Astron. Soc. 431, 2971–2974 (2013)

McLachlan, R.: On the numerical integration of ODE’s by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)

McLachlan, R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)

Oteo, J.A., Ros, J.: The Magnus expansion for classical Hamiltonian systems. J. Phys. A: Math. Gen. 24, 5751–5762 (1991)

Rahoma, W.: Investigating exoplanet orbital evolution around binary star systems. J. Astron. Space Sci. 33, 257–264 (2016)

Rahoma, W., El-Salam, F.A., Ahmed, M.: Analytical treatment of the two-body problem with slowly varying mass. J. Astrophys. Astron. 30, 187–205 (2009)

Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

Veras, D., Hadjidemetriou, J., Tout, C.: An exoplanet’s response to anisotropic stellar mass loss during birth and death. Month. Not. R. Astron. Soc. 435, 2416–2430 (2013)

Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991)

[-]

This item appears in the following Collection(s)

Show full item record