- -

Symplectic propagators for the Kepler problem with time-dependent mass

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Symplectic propagators for the Kepler problem with time-dependent mass

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Kopylov, Nikita es_ES
dc.date.accessioned 2020-03-25T07:20:53Z
dc.date.available 2020-03-25T07:20:53Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 0923-2958 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139358
dc.description.abstract [EN] New numerical integrators specifically designed for solving the two-body gravitational problem with a time-varying mass are presented. They can be seen as a generalization of commutator-free quasi-Magnus exponential integrators and are based on the compositions of symplectic flows. As a consequence, in their implementation they use the mapping that solves the autonomous problem with averaged masses at intermediate stages. Methods up to order eight are constructed and shown to be more efficient than other symplectic schemes on numerical examples. es_ES
dc.description.sponsorship This work has been funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). Kopylov has also been partly supported by Grant GRISOLIA/2015/A/137 from the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Celestial Mechanics and Dynamical Astronomy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Kepler problem es_ES
dc.subject Time-dependent mass es_ES
dc.subject Symplectic integrators es_ES
dc.subject Hamiltonian systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Symplectic propagators for the Kepler problem with time-dependent mass es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10569-019-9903-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2FA%2F137/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F.; Kopylov, N. (2019). Symplectic propagators for the Kepler problem with time-dependent mass. Celestial Mechanics and Dynamical Astronomy. 131(6):1-19. https://doi.org/10.1007/s10569-019-9903-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10569-019-9903-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 131 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\402251 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978) es_ES
dc.description.references Adams, F., Anderson, K., Bloch, A.: Evolution of planetary systems with time-dependent stellar mass-loss. Month. Not. R. Astronom. Soc. 432, 438–454 (2013) es_ES
dc.description.references Alvermann, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011) es_ES
dc.description.references Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1989) es_ES
dc.description.references Blanes, S.: Time-average on the numerical integration of non-autonomous differential equations. SIAM J. Numer. Anal. 56, 2513–2536 (2018) es_ES
dc.description.references Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton (2016) es_ES
dc.description.references Blanes, S., Casas, F., Ros, J.: Processing symplectic methods for near-integrable Hamiltonian systems. Celest. Mech. Dyn. Astron. 77, 17–35 (2000) es_ES
dc.description.references Blanes, S., Casas, F., Oteo, J., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009) es_ES
dc.description.references Blanes, S., Casas, F., Thalhammer, M.: High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220, 243–262 (2017) es_ES
dc.description.references Blanes, S., Casas, F., Thalhammer, M.: Convergence analysis of high-order commutator-free quasi Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38, 743–778 (2018) es_ES
dc.description.references Danby, J.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond (1988) es_ES
dc.description.references El-Saftawy, M., El-Salam, F.A.: Second-order theory for the two-body problem with varying mass including periastron effect. Nonlinear Dyn. 88, 1723–1732 (2017) es_ES
dc.description.references Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116, 141–174 (2013) es_ES
dc.description.references Hadjidemetriou, J.: Secular variation of mass and the evolution of binary systems. In: Kopal, Z. (ed.) Advances in Astronomy and Astrophysics, vol. 5, pp. 131–188. Academic Press, New York (1967) es_ES
dc.description.references Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edn. Springer, Berlin (1993) es_ES
dc.description.references Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edn. Springer, Berlin (2006) es_ES
dc.description.references Laskar, J.: Analytical framework in Poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability and Chaos in $$N$$-Body Dynamical Systems, NATO ASI, pp. 93–114. Plenum Press, New York (1991) es_ES
dc.description.references Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001) es_ES
dc.description.references Li, L.S.: Secular influence of the evolution of orbits of near-Earth asteroids induced by temporary variation of G and solar mass-loss. Month. Not. R. Astron. Soc. 431, 2971–2974 (2013) es_ES
dc.description.references McLachlan, R.: On the numerical integration of ODE’s by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995) es_ES
dc.description.references McLachlan, R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002) es_ES
dc.description.references Oteo, J.A., Ros, J.: The Magnus expansion for classical Hamiltonian systems. J. Phys. A: Math. Gen. 24, 5751–5762 (1991) es_ES
dc.description.references Rahoma, W.: Investigating exoplanet orbital evolution around binary star systems. J. Astron. Space Sci. 33, 257–264 (2016) es_ES
dc.description.references Rahoma, W., El-Salam, F.A., Ahmed, M.: Analytical treatment of the two-body problem with slowly varying mass. J. Astrophys. Astron. 30, 187–205 (2009) es_ES
dc.description.references Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994) es_ES
dc.description.references Veras, D., Hadjidemetriou, J., Tout, C.: An exoplanet’s response to anisotropic stellar mass loss during birth and death. Month. Not. R. Astron. Soc. 435, 2416–2430 (2013) es_ES
dc.description.references Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem