Mostrar el registro sencillo del ítem
dc.contributor.author | Bader, Philipp | es_ES |
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas, Fernando | es_ES |
dc.contributor.author | Kopylov, Nikita | es_ES |
dc.date.accessioned | 2020-03-25T07:20:53Z | |
dc.date.available | 2020-03-25T07:20:53Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 0923-2958 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139358 | |
dc.description.abstract | [EN] New numerical integrators specifically designed for solving the two-body gravitational problem with a time-varying mass are presented. They can be seen as a generalization of commutator-free quasi-Magnus exponential integrators and are based on the compositions of symplectic flows. As a consequence, in their implementation they use the mapping that solves the autonomous problem with averaged masses at intermediate stages. Methods up to order eight are constructed and shown to be more efficient than other symplectic schemes on numerical examples. | es_ES |
dc.description.sponsorship | This work has been funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). Kopylov has also been partly supported by Grant GRISOLIA/2015/A/137 from the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Celestial Mechanics and Dynamical Astronomy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Kepler problem | es_ES |
dc.subject | Time-dependent mass | es_ES |
dc.subject | Symplectic integrators | es_ES |
dc.subject | Hamiltonian systems | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Symplectic propagators for the Kepler problem with time-dependent mass | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10569-019-9903-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2FA%2F137/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bader, P.; Blanes Zamora, S.; Casas, F.; Kopylov, N. (2019). Symplectic propagators for the Kepler problem with time-dependent mass. Celestial Mechanics and Dynamical Astronomy. 131(6):1-19. https://doi.org/10.1007/s10569-019-9903-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10569-019-9903-7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\402251 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978) | es_ES |
dc.description.references | Adams, F., Anderson, K., Bloch, A.: Evolution of planetary systems with time-dependent stellar mass-loss. Month. Not. R. Astronom. Soc. 432, 438–454 (2013) | es_ES |
dc.description.references | Alvermann, A., Fehske, H.: High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230, 5930–5956 (2011) | es_ES |
dc.description.references | Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1989) | es_ES |
dc.description.references | Blanes, S.: Time-average on the numerical integration of non-autonomous differential equations. SIAM J. Numer. Anal. 56, 2513–2536 (2018) | es_ES |
dc.description.references | Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton (2016) | es_ES |
dc.description.references | Blanes, S., Casas, F., Ros, J.: Processing symplectic methods for near-integrable Hamiltonian systems. Celest. Mech. Dyn. Astron. 77, 17–35 (2000) | es_ES |
dc.description.references | Blanes, S., Casas, F., Oteo, J., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009) | es_ES |
dc.description.references | Blanes, S., Casas, F., Thalhammer, M.: High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220, 243–262 (2017) | es_ES |
dc.description.references | Blanes, S., Casas, F., Thalhammer, M.: Convergence analysis of high-order commutator-free quasi Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38, 743–778 (2018) | es_ES |
dc.description.references | Danby, J.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond (1988) | es_ES |
dc.description.references | El-Saftawy, M., El-Salam, F.A.: Second-order theory for the two-body problem with varying mass including periastron effect. Nonlinear Dyn. 88, 1723–1732 (2017) | es_ES |
dc.description.references | Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116, 141–174 (2013) | es_ES |
dc.description.references | Hadjidemetriou, J.: Secular variation of mass and the evolution of binary systems. In: Kopal, Z. (ed.) Advances in Astronomy and Astrophysics, vol. 5, pp. 131–188. Academic Press, New York (1967) | es_ES |
dc.description.references | Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edn. Springer, Berlin (1993) | es_ES |
dc.description.references | Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edn. Springer, Berlin (2006) | es_ES |
dc.description.references | Laskar, J.: Analytical framework in Poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability and Chaos in $$N$$-Body Dynamical Systems, NATO ASI, pp. 93–114. Plenum Press, New York (1991) | es_ES |
dc.description.references | Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001) | es_ES |
dc.description.references | Li, L.S.: Secular influence of the evolution of orbits of near-Earth asteroids induced by temporary variation of G and solar mass-loss. Month. Not. R. Astron. Soc. 431, 2971–2974 (2013) | es_ES |
dc.description.references | McLachlan, R.: On the numerical integration of ODE’s by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995) | es_ES |
dc.description.references | McLachlan, R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002) | es_ES |
dc.description.references | Oteo, J.A., Ros, J.: The Magnus expansion for classical Hamiltonian systems. J. Phys. A: Math. Gen. 24, 5751–5762 (1991) | es_ES |
dc.description.references | Rahoma, W.: Investigating exoplanet orbital evolution around binary star systems. J. Astron. Space Sci. 33, 257–264 (2016) | es_ES |
dc.description.references | Rahoma, W., El-Salam, F.A., Ahmed, M.: Analytical treatment of the two-body problem with slowly varying mass. J. Astrophys. Astron. 30, 187–205 (2009) | es_ES |
dc.description.references | Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994) | es_ES |
dc.description.references | Veras, D., Hadjidemetriou, J., Tout, C.: An exoplanet’s response to anisotropic stellar mass loss during birth and death. Month. Not. R. Astron. Soc. 435, 2416–2430 (2013) | es_ES |
dc.description.references | Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991) | es_ES |