- -

Characterisation of the consistent completion of AHP comparison matrices using graph theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterisation of the consistent completion of AHP comparison matrices using graph theory

Mostrar el registro completo del ítem

Benítez López, J.; Carpitella, S.; Certa, A.; Izquierdo Sebastián, J. (2019). Characterisation of the consistent completion of AHP comparison matrices using graph theory. Journal of Multi-Criteria Decision Analysis. 26(1-2):3-15. https://doi.org/10.1002/mcda.1652

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139462

Ficheros en el ítem

Metadatos del ítem

Título: Characterisation of the consistent completion of AHP comparison matrices using graph theory
Autor: Benítez López, Julio Carpitella, Silvia Certa, A. Izquierdo Sebastián, Joaquín
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Decision-making is frequently affected by uncertainty and/or incomplete information, which turn decision-making into a complex task. It is often the case that some of the actors involved in decision-making are not ...[+]
Palabras clave: AHP , Decision-making , Graph theory , Incomplete information , Layout reorganization
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Multi-Criteria Decision Analysis. (issn: 1099-1360 )
DOI: 10.1002/mcda.1652
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mcda.1652
Tipo: Artículo

References

Benítez, J., Carrión, L., Izquierdo, J., & Pérez-García, R. (2014). Characterization of Consistent Completion of Reciprocal Comparison Matrices. Abstract and Applied Analysis, 2014, 1-12. doi:10.1155/2014/349729

Benítez, J., Delgado-Galván, X., Gutiérrez, J. A., & Izquierdo, J. (2011). Balancing consistency and expert judgment in AHP. Mathematical and Computer Modelling, 54(7-8), 1785-1790. doi:10.1016/j.mcm.2010.12.023

Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2011). Achieving matrix consistency in AHP through linearization. Applied Mathematical Modelling, 35(9), 4449-4457. doi:10.1016/j.apm.2011.03.013 [+]
Benítez, J., Carrión, L., Izquierdo, J., & Pérez-García, R. (2014). Characterization of Consistent Completion of Reciprocal Comparison Matrices. Abstract and Applied Analysis, 2014, 1-12. doi:10.1155/2014/349729

Benítez, J., Delgado-Galván, X., Gutiérrez, J. A., & Izquierdo, J. (2011). Balancing consistency and expert judgment in AHP. Mathematical and Computer Modelling, 54(7-8), 1785-1790. doi:10.1016/j.mcm.2010.12.023

Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2011). Achieving matrix consistency in AHP through linearization. Applied Mathematical Modelling, 35(9), 4449-4457. doi:10.1016/j.apm.2011.03.013

Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2015). Consistent completion of incomplete judgments in decision making using AHP. Journal of Computational and Applied Mathematics, 290, 412-422. doi:10.1016/j.cam.2015.05.023

Benítez, J., Delgado-Galván, X., Izquierdo, J., & Pérez-García, R. (2012). Improving consistency in AHP decision-making processes. Applied Mathematics and Computation, 219(5), 2432-2441. doi:10.1016/j.amc.2012.08.079

Benítez, J., Izquierdo, J., Pérez-García, R., & Ramos-Martínez, E. (2014). A simple formula to find the closest consistent matrix to a reciprocal matrix. Applied Mathematical Modelling, 38(15-16), 3968-3974. doi:10.1016/j.apm.2014.01.007

Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1), 37-50. doi:10.1016/s0305-0483(99)00033-x

Bozóki, S., Csató, L., & Temesi, J. (2016). An application of incomplete pairwise comparison matrices for ranking top tennis players. European Journal of Operational Research, 248(1), 211-218. doi:10.1016/j.ejor.2015.06.069

Bozóki, S., Fülöp, J., & Rónyai, L. (2010). On optimal completion of incomplete pairwise comparison matrices. Mathematical and Computer Modelling, 52(1-2), 318-333. doi:10.1016/j.mcm.2010.02.047

Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2013). A Multistep Methodology for the Evaluation of Human Resources Using the Evidence Theory. International Journal of Intelligent Systems, 28(11), 1072-1088. doi:10.1002/int.21617

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29(4), 387-405. doi:10.1016/0022-2496(85)90002-1

Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857. doi:10.1016/j.eswa.2015.06.007

Ergu, D., Kou, G., Peng, Y., Li, F., & Shi, Y. (2014). Data Consistency in Emergency Management. International Journal of Computers Communications & Control, 7(3), 450. doi:10.15837/ijccc.2012.3.1386

Ergu, D., Kou, G., Peng, Y., & Zhang, M. (2016). Estimating the missing values for the incomplete decision matrix and consistency optimization in emergency management. Applied Mathematical Modelling, 40(1), 254-267. doi:10.1016/j.apm.2015.04.047

Floricel, S., Michela, J. L., & Piperca, S. (2016). Complexity, uncertainty-reduction strategies, and project performance. International Journal of Project Management, 34(7), 1360-1383. doi:10.1016/j.ijproman.2015.11.007

Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0

Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research, 109(2), 501-521. doi:10.1016/s0377-2217(98)00073-3

Harker, P. T. (1987). Alternative modes of questioning in the analytic hierarchy process. Mathematical Modelling, 9(3-5), 353-360. doi:10.1016/0270-0255(87)90492-1

Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004

Homenda, W., Jastrzebska, A., & Pedrycz, W. (2016). Multicriteria decision making inspired by human cognitive processes. Applied Mathematics and Computation, 290, 392-411. doi:10.1016/j.amc.2016.05.041

Hsu, W.-K. K., Huang, S.-H. S., & Tseng, W.-J. (2016). Evaluating the risk of operational safety for dangerous goods in airfreights – A revised risk matrix based on fuzzy AHP. Transportation Research Part D: Transport and Environment, 48, 235-247. doi:10.1016/j.trd.2016.08.018

Hua, Z., Gong, B., & Xu, X. (2008). A DS–AHP approach for multi-attribute decision making problem with incomplete information. Expert Systems with Applications, 34(3), 2221-2227. doi:10.1016/j.eswa.2007.02.021

Karanik, M., Wanderer, L., Gomez-Ruiz, J. A., & Pelaez, J. I. (2016). Reconstruction methods for AHP pairwise matrices: How reliable are they? Applied Mathematics and Computation, 279, 103-124. doi:10.1016/j.amc.2016.01.008

Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422. doi:10.1016/j.eswa.2016.08.064

Liu, S., Chan, F. T. S., & Ran, W. (2016). Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Systems with Applications, 55, 37-47. doi:10.1016/j.eswa.2016.01.059

Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620

Massanet, S., Vicente Riera, J., Torrens, J., & Herrera-Viedma, E. (2016). A model based on subjective linguistic preference relations for group decision making problems. Information Sciences, 355-356, 249-264. doi:10.1016/j.ins.2016.03.040

Ortiz-Barrios, M. A., Aleman-Romero, B. A., Rebolledo-Rudas, J., Maldonado-Mestre, H., Montes-Villa, L., De Felice, F., & Petrillo, A. (2017). The analytic decision-making preference model to evaluate the disaster readiness in emergency departments: The A.D.T. model. Journal of Multi-Criteria Decision Analysis, 24(5-6), 204-226. doi:10.1002/mcda.1629

Pandey, A., & Kumar, A. (2016). A note on ‘‘Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP”. Information Sciences, 346-347, 1-5. doi:10.1016/j.ins.2016.01.054

Qazi, A., Quigley, J., Dickson, A., & Kirytopoulos, K. (2016). Project Complexity and Risk Management (ProCRiM): Towards modelling project complexity driven risk paths in construction projects. International Journal of Project Management, 34(7), 1183-1198. doi:10.1016/j.ijproman.2016.05.008

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5

Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(2), 251-318. doi:10.1007/bf03191825

Seiti, H., Tagipour, R., Hafezalkotob, A., & Asgari, F. (2017). Maintenance strategy selection with risky evaluations using RAHP. Journal of Multi-Criteria Decision Analysis, 24(5-6), 257-274. doi:10.1002/mcda.1618

Shiraishi, S., Obata, T., & Daigo, M. (1998). PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP. Journal of the Operations Research Society of Japan, 41(3), 404-414. doi:10.15807/jorsj.41.404

Srdjevic, B., Srdjevic, Z., & Blagojevic, B. (2014). First-Level Transitivity Rule Method for Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Process. Applied Mathematics & Information Sciences, 8(2), 459-467. doi:10.12785/amis/080202

Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1-29. doi:10.1016/j.ejor.2004.04.028

Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. doi:10.1016/s0165-0114(83)80082-7

van Uden , E. 2002 Estimating missing data in pairwise comparison matrices Texts in Operational and Systems Research in the Face to Challenge the XXI Century, Methods and Techniques in Information Analysis and Decision Making Academic Printing House Warsaw

Vargas, L., De Felice, F., & Petrillo, A. (2017). Editorial journal of multicriteria decision analysis special issue on «Industrial and Manufacturing Engineering: Theory and Application using AHP/ANP». Journal of Multi-Criteria Decision Analysis, 24(5-6), 201-202. doi:10.1002/mcda.1632

Wang, T.-C., & Chen, Y.-H. (2008). Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178(19), 3755-3765. doi:10.1016/j.ins.2008.05.028

Wang, Z.-J., & Tong, X. (2016). Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Information Sciences, 361-362, 29-47. doi:10.1016/j.ins.2016.04.047

Wang, H., & Xu, Z. (2016). Interactive algorithms for improving incomplete linguistic preference relations based on consistency measures. Applied Soft Computing, 42, 66-79. doi:10.1016/j.asoc.2015.09.058

Weiss-Cohen, L., Konstantinidis, E., Speekenbrink, M., & Harvey, N. (2016). Incorporating conflicting descriptions into decisions from experience. Organizational Behavior and Human Decision Processes, 135, 55-69. doi:10.1016/j.obhdp.2016.05.005

Xu, Y., Chen, L., Rodríguez, R. M., Herrera, F., & Wang, H. (2016). Deriving the priority weights from incomplete hesitant fuzzy preference relations in group decision making. Knowledge-Based Systems, 99, 71-78. doi:10.1016/j.knosys.2016.01.047

Zhang, H. (2016). Group decision making based on multiplicative consistent reciprocal preference relations. Fuzzy Sets and Systems, 282, 31-46. doi:10.1016/j.fss.2015.04.009

Zhang, H. (2016). Group decision making based on incomplete multiplicative and fuzzy preference relations. Applied Soft Computing, 48, 735-744. doi:10.1016/j.asoc.2016.07.046

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem