- -

Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function

Mostrar el registro completo del ítem

Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences. 42(17):5649-5667. https://doi.org/10.1002/mma.5333

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139840

Ficheros en el ítem

Metadatos del ítem

Título: Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function
Autor: Calatayud-Gregori, Julia Cortés, J.-C. Jornet-Sanz, Marc
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] This paper deals with the randomized heat equation defined on a general bounded interval [L-1, L-2] and with nonhomogeneous boundary conditions. The solution is a stochastic process that can be related, via changes ...[+]
Palabras clave: Karhunen-Loeve expansion , Numerical simulations , Probability density function , Random heat equation , Uncertainty quantification
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.5333
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.5333
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work has been supported by Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo ...[+]
Tipo: Artículo

References

Holden, H., Øksendal, B., Ubøe, J., & Zhang, T. (2010). Stochastic Partial Differential Equations. doi:10.1007/978-0-387-89488-1

Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063

Xu, Z., Tipireddy, R., & Lin, G. (2016). Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Applied Mathematical Modelling, 40(9-10), 5542-5559. doi:10.1016/j.apm.2015.12.041 [+]
Holden, H., Øksendal, B., Ubøe, J., & Zhang, T. (2010). Stochastic Partial Differential Equations. doi:10.1007/978-0-387-89488-1

Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063

Xu, Z., Tipireddy, R., & Lin, G. (2016). Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Applied Mathematical Modelling, 40(9-10), 5542-5559. doi:10.1016/j.apm.2015.12.041

CalatayudJ CortésJC JornetM.On the approximation of the probability density function of the randomized heat equation.https://arxiv.org/pdf/1802.04190.pdf

Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2

Vaart, A. W. van der. (1998). Asymptotic Statistics. doi:10.1017/cbo9780511802256

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Pitman, J. (1993). Probability. doi:10.1007/978-1-4612-4374-8

Williams, D. (1991). Probability with Martingales. doi:10.1017/cbo9780511813658

LawlessJF.Truncated Distributions: Wiley StatsRef: Statistics Reference Online;2014.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem