- -

Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.date.accessioned 2020-03-31T06:46:09Z
dc.date.available 2020-03-31T06:46:09Z
dc.date.issued 2019-11-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139840
dc.description.abstract [EN] This paper deals with the randomized heat equation defined on a general bounded interval [L-1, L-2] and with nonhomogeneous boundary conditions. The solution is a stochastic process that can be related, via changes of variable, with the solution stochastic process of the random heat equation defined on [0,1] with homogeneous boundary conditions. Results in the extant literature establish conditions under which the probability density function of the solution process to the random heat equation on [0,1] with homogeneous boundary conditions can be approximated. Via the changes of variable and the Random Variable Transformation technique, we set mild conditions under which the probability density function of the solution process to the random heat equation on a general bounded interval [L-1, L-2] and with nonhomogeneous boundary conditions can be approximated uniformly or pointwise. Furthermore, we provide sufficient conditions in order that the expectation and the variance of the solution stochastic process can be computed from the proposed approximations of the probability density function. Numerical examples are performed in the case that the initial condition process has a certain Karhunen-Loeve expansion, being Gaussian and non-Gaussian. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Karhunen-Loeve expansion es_ES
dc.subject Numerical simulations es_ES
dc.subject Probability density function es_ES
dc.subject Random heat equation es_ES
dc.subject Uncertainty quantification es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5333 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Uncertainty quantification for random parabolic equations with non-homogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences. 42(17):5649-5667. https://doi.org/10.1002/mma.5333 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5333 es_ES
dc.description.upvformatpinicio 5649 es_ES
dc.description.upvformatpfin 5667 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\368936 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Holden, H., Øksendal, B., Ubøe, J., & Zhang, T. (2010). Stochastic Partial Differential Equations. doi:10.1007/978-0-387-89488-1 es_ES
dc.description.references Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063 es_ES
dc.description.references Xu, Z., Tipireddy, R., & Lin, G. (2016). Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Applied Mathematical Modelling, 40(9-10), 5542-5559. doi:10.1016/j.apm.2015.12.041 es_ES
dc.description.references CalatayudJ CortésJC JornetM.On the approximation of the probability density function of the randomized heat equation.https://arxiv.org/pdf/1802.04190.pdf es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Vaart, A. W. van der. (1998). Asymptotic Statistics. doi:10.1017/cbo9780511802256 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Pitman, J. (1993). Probability. doi:10.1007/978-1-4612-4374-8 es_ES
dc.description.references Williams, D. (1991). Probability with Martingales. doi:10.1017/cbo9780511813658 es_ES
dc.description.references LawlessJF.Truncated Distributions: Wiley StatsRef: Statistics Reference Online;2014. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem