- -

Generalized high-order classes for solving nonlinear systems and their applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized high-order classes for solving nonlinear systems and their applications

Mostrar el registro completo del ítem

Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). Generalized high-order classes for solving nonlinear systems and their applications. Mathematics. 7(12):1-14. https://doi.org/10.3390/math7121194

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139933

Ficheros en el ítem

Metadatos del ítem

Título: Generalized high-order classes for solving nonlinear systems and their applications
Autor: Chicharro, Francisco I. Cordero Barbero, Alicia Garrido-Saez, Neus Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Fecha difusión:
Resumen:
[EN] A generalized high-order class for approximating the solution of nonlinear systems of equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations, we propose an extension to ...[+]
Palabras clave: Nonlinear systems , Iterative method , Convergence , Efficiency
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7121194
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math7121194
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana, under grants PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and PROMETEO/2016/089, respectively.
Tipo: Artículo

References

Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2014). Multipoint methods for solving nonlinear equations: A survey. Applied Mathematics and Computation, 226, 635-660. doi:10.1016/j.amc.2013.10.072

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532 [+]
Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2014). Multipoint methods for solving nonlinear equations: A survey. Applied Mathematics and Computation, 226, 635-660. doi:10.1016/j.amc.2013.10.072

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532

Sharma, J. R., & Arora, H. (2016). Improved Newton-like methods for solving systems of nonlinear equations. SeMA Journal, 74(2), 147-163. doi:10.1007/s40324-016-0085-x

Amiri, A., Cordero, A., Taghi Darvishi, M., & Torregrosa, J. R. (2018). Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Applied Mathematics and Computation, 323, 43-57. doi:10.1016/j.amc.2017.11.040

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z

Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). Wide stability in a new family of optimal fourth‐order iterative methods. Computational and Mathematical Methods, 1(2), e1023. doi:10.1002/cmm4.1023

FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.x

Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7

Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6

Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem