- -

Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness

Mostrar el registro completo del ítem

Casabán, M.; Company Rossi, R.; Jódar Sánchez, LA. (2019). Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness. Mathematics. 7(9):1-21. https://doi.org/10.3390/math7090853

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139934

Ficheros en el ítem

Metadatos del ítem

Título: Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness
Autor: Casabán, M.-C. Company Rossi, Rafael Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] This paper deals with the construction of numerical solutions of random hyperbolic models with a finite degree of randomness that make manageable the computation of its expectation and variance. The approach is based ...[+]
Palabras clave: Random hyperbolic problem , Mean square random calculus , Numerical solution , Random integral transform , Random Gauss quadrature rules
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7090853
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math7090853
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work was partially supported by the Ministerio de Ciencia, Innovacion y Universidades Spanish grant MTM2017-89664-P.
Tipo: Artículo

References

Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063

Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021

Casaban, M.-C., Cortes, J.-C., & Jodar, L. (2018). Analytic-Numerical Solution of Random Parabolic Models: A Mean Square Fourier Transform Approach. Mathematical Modelling and Analysis, 23(1), 79-100. doi:10.3846/mma.2018.006 [+]
Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063

Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021

Casaban, M.-C., Cortes, J.-C., & Jodar, L. (2018). Analytic-Numerical Solution of Random Parabolic Models: A Mean Square Fourier Transform Approach. Mathematical Modelling and Analysis, 23(1), 79-100. doi:10.3846/mma.2018.006

Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numerical Methods for Partial Differential Equations, 26(1), 239-252. doi:10.1002/num.20442

Weston, V. H., & He, S. (1993). Wave splitting of the telegraph equation in R 3 and its application to inverse scattering. Inverse Problems, 9(6), 789-812. doi:10.1088/0266-5611/9/6/013

Jordan, P. M., & Puri, A. (1999). Digital signal propagation in dispersive media. Journal of Applied Physics, 85(3), 1273-1282. doi:10.1063/1.369258

Banasiak, J., & Mika, J. R. (1998). Singularly perturbed telegraph equations with applications in the random walk theory. Journal of Applied Mathematics and Stochastic Analysis, 11(1), 9-28. doi:10.1155/s1048953398000021

Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain Journal of Mathematics, 4(3), 497-510. doi:10.1216/rmj-1974-4-3-497

Iacus, S. M. (2001). Statistical analysis of the inhomogeneous telegrapher’s process. Statistics & Probability Letters, 55(1), 83-88. doi:10.1016/s0167-7152(01)00133-x

Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2015). A random Laplace transform method for solving random mixed parabolic differential problems. Applied Mathematics and Computation, 259, 654-667. doi:10.1016/j.amc.2015.02.091

Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics, 330, 937-954. doi:10.1016/j.cam.2016.11.049

Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem