Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021
Casaban, M.-C., Cortes, J.-C., & Jodar, L. (2018). Analytic-Numerical Solution of Random
Parabolic Models: A Mean Square Fourier
Transform Approach. Mathematical Modelling and Analysis, 23(1), 79-100. doi:10.3846/mma.2018.006
[+]
Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021
Casaban, M.-C., Cortes, J.-C., & Jodar, L. (2018). Analytic-Numerical Solution of Random
Parabolic Models: A Mean Square Fourier
Transform Approach. Mathematical Modelling and Analysis, 23(1), 79-100. doi:10.3846/mma.2018.006
Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numerical Methods for Partial Differential Equations, 26(1), 239-252. doi:10.1002/num.20442
Weston, V. H., & He, S. (1993). Wave splitting of the telegraph equation in R
3
and its application to inverse scattering. Inverse Problems, 9(6), 789-812. doi:10.1088/0266-5611/9/6/013
Jordan, P. M., & Puri, A. (1999). Digital signal propagation in dispersive media. Journal of Applied Physics, 85(3), 1273-1282. doi:10.1063/1.369258
Banasiak, J., & Mika, J. R. (1998). Singularly perturbed telegraph equations with applications in the random walk theory. Journal of Applied Mathematics and Stochastic Analysis, 11(1), 9-28. doi:10.1155/s1048953398000021
Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain Journal of Mathematics, 4(3), 497-510. doi:10.1216/rmj-1974-4-3-497
Iacus, S. M. (2001). Statistical analysis of the inhomogeneous telegrapher’s process. Statistics & Probability Letters, 55(1), 83-88. doi:10.1016/s0167-7152(01)00133-x
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2015). A random Laplace transform method for solving random mixed parabolic differential problems. Applied Mathematics and Computation, 259, 654-667. doi:10.1016/j.amc.2015.02.091
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2018). Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. Journal of Computational and Applied Mathematics, 330, 937-954. doi:10.1016/j.cam.2016.11.049
Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017
[-]