Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015
Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2014). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146-159. doi:10.1061/(asce)wr.1943-5452.0000314
Adamowski, J. F. (2008). Peak Daily Water Demand Forecast Modeling Using Artificial Neural Networks. Journal of Water Resources Planning and Management, 134(2), 119-128. doi:10.1061/(asce)0733-9496(2008)134:2(119)
[+]
Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015
Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2014). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146-159. doi:10.1061/(asce)wr.1943-5452.0000314
Adamowski, J. F. (2008). Peak Daily Water Demand Forecast Modeling Using Artificial Neural Networks. Journal of Water Resources Planning and Management, 134(2), 119-128. doi:10.1061/(asce)0733-9496(2008)134:2(119)
Ghiassi, M., Zimbra, D. K., & Saidane, H. (2008). Urban Water Demand Forecasting with a Dynamic Artificial Neural Network Model. Journal of Water Resources Planning and Management, 134(2), 138-146. doi:10.1061/(asce)0733-9496(2008)134:2(138)
Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559-583. doi:10.1016/0169-2070(89)90012-5
Herrera, M., García-Díaz, J. C., Izquierdo, J., & Pérez-García, R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series. Stochastic Analysis and Applications, 29(6), 998-1007. doi:10.1080/07362994.2011.610161
Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324
Barzegar, R., & Asghari Moghaddam, A. (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1). doi:10.1007/s40808-015-0072-8
Nadiri, A. A., Gharekhani, M., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2017). Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Science of The Total Environment, 574, 691-706. doi:10.1016/j.scitotenv.2016.09.093
Brentan, B. M., Meirelles, G., Herrera, M., Luvizotto, E., & Izquierdo, J. (2017). Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 1-10. doi:10.1155/2017/6343625
Brentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi:10.1016/j.cam.2016.02.009
Johansson, C., Bergkvist, M., Geysen, D., Somer, O. D., Lavesson, N., & Vanhoudt, D. (2017). Operational Demand Forecasting In District Heating Systems Using Ensembles Of Online Machine Learning Algorithms. Energy Procedia, 116, 208-216. doi:10.1016/j.egypro.2017.05.068
Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21-45. doi:10.1109/mcas.2006.1688199
Ferreira, R. P., Martiniano, A., Ferreira, A., Ferreira, A., & Sassi, R. J. (2016). Study on Daily Demand Forecasting Orders using Artificial Neural Network. IEEE Latin America Transactions, 14(3), 1519-1525. doi:10.1109/tla.2016.7459644
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018
Schölkop, B. (2003). An Introduction to Support Vector Machines. Recent Advances and Trends in Nonparametric Statistics, 3-17. doi:10.1016/b978-044451378-6/50001-6
Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2), 107-122. doi:10.1007/s13042-011-0019-y
Ivakhnenko, A. G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2), 207-219. doi:10.1016/0005-1098(70)90092-0
[-]