Mostrar el registro sencillo del ítem
dc.contributor.author | Ambrosio, J. K. | es_ES |
dc.contributor.author | Brentan, B. M. | es_ES |
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | Luvizotto, E. | es_ES |
dc.contributor.author | Ribeiro, L. | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.date.accessioned | 2020-04-01T07:16:04Z | |
dc.date.available | 2020-04-01T07:16:04Z | |
dc.date.issued | 2019-01-08 | es_ES |
dc.identifier.issn | 1024-123X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/139939 | |
dc.description.abstract | [EN] Prediction models have become essential for the improvement of decision-making processes in public management and, particularly, for water supply utilities. Accurate estimation often needs to solve multimeasurement, mixed-mode, and space-time problems, typical of many engineering applications. As a result, accurate estimation of real world variables is still one of the major problems in mathematical approximation. Several individual techniques have shown very good estimation abilities. However, none of them are free from drawbacks. This paper faces the challenge of creating accurate water demand predictive models at urban scale by using so-called committee machines, which are ensemble frameworks of single machine learning models. The proposal is able to combine models of varied nature. Specifically, this paper analyzes combinations of such techniques as multilayer perceptrons, support vector machines, extreme learning machines, random forests, adaptive neural fuzzy inference systems, and the group method for data handling. Analyses are checked on two water demand datasets from Franca (Brazil). As an ensemble tool, the combined response of a committee machine outperforms any single constituent model. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Mathematical Problems in Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Committee Machines for Hourly Water Demand Forecasting in Water Supply Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2019/9765468 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ambrosio, JK.; Brentan, BM.; Herrera Fernández, AM.; Luvizotto, E.; Ribeiro, L.; Izquierdo Sebastián, J. (2019). Committee Machines for Hourly Water Demand Forecasting in Water Supply Systems. Mathematical Problems in Engineering. 2019:1-11. https://doi.org/10.1155/2019/9765468 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2019/9765468 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2019 | es_ES |
dc.relation.pasarela | S\373712 | es_ES |
dc.description.references | Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015 | es_ES |
dc.description.references | Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2014). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146-159. doi:10.1061/(asce)wr.1943-5452.0000314 | es_ES |
dc.description.references | Adamowski, J. F. (2008). Peak Daily Water Demand Forecast Modeling Using Artificial Neural Networks. Journal of Water Resources Planning and Management, 134(2), 119-128. doi:10.1061/(asce)0733-9496(2008)134:2(119) | es_ES |
dc.description.references | Ghiassi, M., Zimbra, D. K., & Saidane, H. (2008). Urban Water Demand Forecasting with a Dynamic Artificial Neural Network Model. Journal of Water Resources Planning and Management, 134(2), 138-146. doi:10.1061/(asce)0733-9496(2008)134:2(138) | es_ES |
dc.description.references | Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559-583. doi:10.1016/0169-2070(89)90012-5 | es_ES |
dc.description.references | Herrera, M., García-Díaz, J. C., Izquierdo, J., & Pérez-García, R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series. Stochastic Analysis and Applications, 29(6), 998-1007. doi:10.1080/07362994.2011.610161 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | Barzegar, R., & Asghari Moghaddam, A. (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1). doi:10.1007/s40808-015-0072-8 | es_ES |
dc.description.references | Nadiri, A. A., Gharekhani, M., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2017). Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Science of The Total Environment, 574, 691-706. doi:10.1016/j.scitotenv.2016.09.093 | es_ES |
dc.description.references | Brentan, B. M., Meirelles, G., Herrera, M., Luvizotto, E., & Izquierdo, J. (2017). Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 1-10. doi:10.1155/2017/6343625 | es_ES |
dc.description.references | Brentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi:10.1016/j.cam.2016.02.009 | es_ES |
dc.description.references | Johansson, C., Bergkvist, M., Geysen, D., Somer, O. D., Lavesson, N., & Vanhoudt, D. (2017). Operational Demand Forecasting In District Heating Systems Using Ensembles Of Online Machine Learning Algorithms. Energy Procedia, 116, 208-216. doi:10.1016/j.egypro.2017.05.068 | es_ES |
dc.description.references | Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21-45. doi:10.1109/mcas.2006.1688199 | es_ES |
dc.description.references | Ferreira, R. P., Martiniano, A., Ferreira, A., Ferreira, A., & Sassi, R. J. (2016). Study on Daily Demand Forecasting Orders using Artificial Neural Network. IEEE Latin America Transactions, 14(3), 1519-1525. doi:10.1109/tla.2016.7459644 | es_ES |
dc.description.references | Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 | es_ES |
dc.description.references | Schölkop, B. (2003). An Introduction to Support Vector Machines. Recent Advances and Trends in Nonparametric Statistics, 3-17. doi:10.1016/b978-044451378-6/50001-6 | es_ES |
dc.description.references | Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2), 107-122. doi:10.1007/s13042-011-0019-y | es_ES |
dc.description.references | Ivakhnenko, A. G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2), 207-219. doi:10.1016/0005-1098(70)90092-0 | es_ES |