- -

Modelado de series climatológicas mediante una red neuronal artificial

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado de series climatológicas mediante una red neuronal artificial

Mostrar el registro completo del ítem

Palazón González, J.; García Guzmán, A.; García Guzmán (2004). Modelado de series climatológicas mediante una red neuronal artificial. Ingeniería del agua. 11(1):41-52. https://doi.org/10.4995/ia.2004.2521

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/139967

Ficheros en el ítem

Metadatos del ítem

Título: Modelado de series climatológicas mediante una red neuronal artificial
Autor: Palazón González, Jesús García Guzmán, Adela García Guzmán
Fecha difusión:
Resumen:
[ES] Se ha desarrollado un modelo de red neuronal para caracterizar series meteorológicas que son difíciles de modelar con los métodos clásicos de inferencia estadística. Concretamente, se ha utilizado la red neuronal para ...[+]
Palabras clave: Intensidad de la lluvia , Dependencia de la intensidad y duración de la lluvia , Red neuronal artificial , Términos de error en una red neuronal artificial
Derechos de uso: Reserva de todos los derechos
Fuente:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2004.2521
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2004.2521
Tipo: Artículo

References

Alvarez, J., y S. Bolado (1996). Descripción de los procesos de infiltración mediante redes neuronales artificiales. Ing. Agua. 3: 39 - 46.

ASCE task committee on application of artificial neural networks in hydrology (2000). Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng. 5: 115 - 123.

Bárdossy, A. (1998). Generating precipitation time series using simulated annealing. Water Resour. Res. 34: 1737 - 1744. [+]
Alvarez, J., y S. Bolado (1996). Descripción de los procesos de infiltración mediante redes neuronales artificiales. Ing. Agua. 3: 39 - 46.

ASCE task committee on application of artificial neural networks in hydrology (2000). Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng. 5: 115 - 123.

Bárdossy, A. (1998). Generating precipitation time series using simulated annealing. Water Resour. Res. 34: 1737 - 1744.

Cancelliere, A., G. Giuliano, A. Ancarani y G. Rossi (2002). A neural networks approach for deriving irrigation reservoir operating rules. Water Resour. Mgmt. 16: 71 - 88.

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Math. Control, Signals Syst. 2: 303 - 314.

Dibike, Y. B., D. Solomatine y M. B. Abbott (1999). On the encapsulation of numerical hydraulic models in artificial neural network. J. Hydr. Res. 37: 147 - 161.

Eagleson, P. S. (1978). Climate, soil and vegetation (2): The distribution of annual precipitation derived from storm sequences. Water Resour. Res. 14: 713 - 721.

Entakhabi, D., I. Rodríguez Iturbe y P. S. Eagleson (1989). Representation of the temporal rainfall process by a modified Neyman Scott rectangular pulse model: Parameter estimation and validation. Water Resour. Res.25: 295 - 302.

Fine, T. L. (1999). Feedforward neural network methodology. Ed. Springer - Verlag

Freeman, J. A., y D. M. Skapura (1993). Redes neuronales: algoritmos, aplicaciones y técnicas de programación. Ed. Addison - Wesley

French, M. N., W. F. Krajewski y R. R. Cuykendall (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol. 137: 1 - 31.

Funahashi, K. I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks 2: 183 - 192.

Goel, N. K., R. S. Kurothe, B. S. Mathur y R. M. Vogel (2000). A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol.228: 56 - 67.

Govindaraju, R. S., y A. Ramachandra Rao (2000). Artificial neural networks in hydrology. Ed. Kluwer Academic Publishers

Hagan, M., y M. Menhaj (1994). Training feedforward networks with the Marquardt algorithm. IEEE Trans. On Neural Networks 5: 989 - 993.

Hecht - Nielsen, R. (1987). Kolmogorov's mapping neural network existence theorem. Proc. Int. Conf. on Neural Networks 3: 11 - 13, IEEE Press.

Hecht - Nielsen, R. (1990). Neurocomputing. Ed. Addison - Wesley

Hilera González, J. R., y V. J. Martínez Hernando (1995). Redes neuronales artificiales. Fundamentos, modelos y aplicaciones. Ed. Ra - Ma

Himmelblau, D. M. (1972). Applied nonlinear programming. Ed. McGraw - Hill

Hornik, K., M. Stinchcombe y H. White (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3: 551 - 560.

Hsu, K. L., H. V. Gupta y S. Sorooshian (1995). Artificial neural network modeling of the rainfall - runoff process. Water Resour. Res. 31: 2517 - 2530.

Hsu, K. L., H. V. Gupta, X. Gao y S. Sorooshian (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resour. Res. 35: 1605 - 1618.

Hutchinson, M. F. (1990). A point rainfall model based on a three state continuous Markov occurrence process. J. Hydrol. 114: 125 - 148.

Istok, J. D. y L. Boersma (1989). A stochastic cluster model for hourly precipitation data. J. Hydrol. 106: 257 - 285.

Johansson, E. M., F. U. Dowla y D. M. Goodman (1992). Backpropagation learning for multilayer feedforward neural networks using the conjugate gradient method. Int. J. Neural Syst. 2: 291 - 301.

Kao, J. J. (1996). Neural net for determining DEM based model drainage pattern. J. Irrigation and Drainage Engng. 122: 112 - 121.

Kolmogorov, A. N. (1957). On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk USSR 114: 953 - 956.

Kurkova, V. (1991). Kolmogorov's theorem is relevant. Neural Computation 3: 617 - 622.

Leshno, M., V. Lin, A. Pinkus y S. Schocken (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6: 861 - 867.

Maier, H. R., y G. C. Dandy (1999). Empirical comparison of various methods for training feedforward neural networks for salinity forecasting. Water Resour. Res.35: 2591 - 2596.

Martín del Brío, B. y A. Sanz Molina. (1997) Redes neuronales y sistemas borrosos. Ed. Ra - Ma

Mason, J. C., R. K. Price y A. Tem'me (1996). A neural network model of rainfall runoff using radial basis functions. J. Hydr. Res. 34: 537 - 548.

Morshed, J., y J. J. Kaluarachchi (1998). Parameter estimation using artificial neural network and genetic algorithm for free product migration and recovery. Water Resour. Res. 34: 1101 - 1113.

Rodríguez Iturbe, I., B. Febres de Powder y J. B. Valdés (1987). Rectangular pulses point processes for rainfall: Analysis of empirical data. J. Geophysical Res. 92: 9645 - 9656.

Rogers, L. L., y F. U. Dowla (1994). Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res.30: 457 - 481.

Schaap, M.G., y W. Bouten (1996). Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32: 3033 - 3040.

Swingler, K. (1996). Applying neural networks: a practical guide. Ed. Morgan Kaufman Publishers, Inc.

Whitley, R., y T. V. Hromadka II (1999). Approximate confidence intervals for design floods for a single site using a neural network. Water Resour. Res. 35: 203 - 209.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem