Mostrar el registro sencillo del ítem
dc.contributor.author | Palazón González, Jesús | es_ES |
dc.contributor.author | García Guzmán, Adela | es_ES |
dc.contributor.author | García Guzmán | es_ES |
dc.date.accessioned | 2020-04-01T10:58:27Z | |
dc.date.available | 2020-04-01T10:58:27Z | |
dc.date.issued | 2004-03-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/139967 | |
dc.description.abstract | [ES] Se ha desarrollado un modelo de red neuronal para caracterizar series meteorológicas que son difíciles de modelar con los métodos clásicos de inferencia estadística. Concretamente, se ha utilizado la red neuronal para cuantificar la relación intensidad – duración de la lluvia, variables que se encuentran interrelacionadas de una forma muy imprecisa. El modelo contiene funciones de transferencia no lineales e incluye términos de naturaleza estadística en la función de error. Para estimar los parámetros de la red neuronal se ha desarrollado un algoritmo de aprendizaje adaptado a funciones de error no derivables. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Intensidad de la lluvia | es_ES |
dc.subject | Dependencia de la intensidad y duración de la lluvia | es_ES |
dc.subject | Red neuronal artificial | es_ES |
dc.subject | Términos de error en una red neuronal artificial | es_ES |
dc.title | Modelado de series climatológicas mediante una red neuronal artificial | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2004.2521 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Palazón González, J.; García Guzmán, A.; García Guzmán (2004). Modelado de series climatológicas mediante una red neuronal artificial. Ingeniería del agua. 11(1):41-52. https://doi.org/10.4995/ia.2004.2521 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2004.2521 | es_ES |
dc.description.upvformatpinicio | 41 | es_ES |
dc.description.upvformatpfin | 52 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\2521 | es_ES |
dc.description.references | Alvarez, J., y S. Bolado (1996). Descripción de los procesos de infiltración mediante redes neuronales artificiales. Ing. Agua. 3: 39 - 46. | es_ES |
dc.description.references | ASCE task committee on application of artificial neural networks in hydrology (2000). Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Engng. 5: 115 - 123. | es_ES |
dc.description.references | Bárdossy, A. (1998). Generating precipitation time series using simulated annealing. Water Resour. Res. 34: 1737 - 1744. | es_ES |
dc.description.references | Cancelliere, A., G. Giuliano, A. Ancarani y G. Rossi (2002). A neural networks approach for deriving irrigation reservoir operating rules. Water Resour. Mgmt. 16: 71 - 88. | es_ES |
dc.description.references | Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Math. Control, Signals Syst. 2: 303 - 314. | es_ES |
dc.description.references | Dibike, Y. B., D. Solomatine y M. B. Abbott (1999). On the encapsulation of numerical hydraulic models in artificial neural network. J. Hydr. Res. 37: 147 - 161. | es_ES |
dc.description.references | Eagleson, P. S. (1978). Climate, soil and vegetation (2): The distribution of annual precipitation derived from storm sequences. Water Resour. Res. 14: 713 - 721. | es_ES |
dc.description.references | Entakhabi, D., I. Rodríguez Iturbe y P. S. Eagleson (1989). Representation of the temporal rainfall process by a modified Neyman Scott rectangular pulse model: Parameter estimation and validation. Water Resour. Res.25: 295 - 302. | es_ES |
dc.description.references | Fine, T. L. (1999). Feedforward neural network methodology. Ed. Springer - Verlag | es_ES |
dc.description.references | Freeman, J. A., y D. M. Skapura (1993). Redes neuronales: algoritmos, aplicaciones y técnicas de programación. Ed. Addison - Wesley | es_ES |
dc.description.references | French, M. N., W. F. Krajewski y R. R. Cuykendall (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol. 137: 1 - 31. | es_ES |
dc.description.references | Funahashi, K. I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks 2: 183 - 192. | es_ES |
dc.description.references | Goel, N. K., R. S. Kurothe, B. S. Mathur y R. M. Vogel (2000). A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol.228: 56 - 67. | es_ES |
dc.description.references | Govindaraju, R. S., y A. Ramachandra Rao (2000). Artificial neural networks in hydrology. Ed. Kluwer Academic Publishers | es_ES |
dc.description.references | Hagan, M., y M. Menhaj (1994). Training feedforward networks with the Marquardt algorithm. IEEE Trans. On Neural Networks 5: 989 - 993. | es_ES |
dc.description.references | Hecht - Nielsen, R. (1987). Kolmogorov's mapping neural network existence theorem. Proc. Int. Conf. on Neural Networks 3: 11 - 13, IEEE Press. | es_ES |
dc.description.references | Hecht - Nielsen, R. (1990). Neurocomputing. Ed. Addison - Wesley | es_ES |
dc.description.references | Hilera González, J. R., y V. J. Martínez Hernando (1995). Redes neuronales artificiales. Fundamentos, modelos y aplicaciones. Ed. Ra - Ma | es_ES |
dc.description.references | Himmelblau, D. M. (1972). Applied nonlinear programming. Ed. McGraw - Hill | es_ES |
dc.description.references | Hornik, K., M. Stinchcombe y H. White (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3: 551 - 560. | es_ES |
dc.description.references | Hsu, K. L., H. V. Gupta y S. Sorooshian (1995). Artificial neural network modeling of the rainfall - runoff process. Water Resour. Res. 31: 2517 - 2530. | es_ES |
dc.description.references | Hsu, K. L., H. V. Gupta, X. Gao y S. Sorooshian (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resour. Res. 35: 1605 - 1618. | es_ES |
dc.description.references | Hutchinson, M. F. (1990). A point rainfall model based on a three state continuous Markov occurrence process. J. Hydrol. 114: 125 - 148. | es_ES |
dc.description.references | Istok, J. D. y L. Boersma (1989). A stochastic cluster model for hourly precipitation data. J. Hydrol. 106: 257 - 285. | es_ES |
dc.description.references | Johansson, E. M., F. U. Dowla y D. M. Goodman (1992). Backpropagation learning for multilayer feedforward neural networks using the conjugate gradient method. Int. J. Neural Syst. 2: 291 - 301. | es_ES |
dc.description.references | Kao, J. J. (1996). Neural net for determining DEM based model drainage pattern. J. Irrigation and Drainage Engng. 122: 112 - 121. | es_ES |
dc.description.references | Kolmogorov, A. N. (1957). On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk USSR 114: 953 - 956. | es_ES |
dc.description.references | Kurkova, V. (1991). Kolmogorov's theorem is relevant. Neural Computation 3: 617 - 622. | es_ES |
dc.description.references | Leshno, M., V. Lin, A. Pinkus y S. Schocken (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6: 861 - 867. | es_ES |
dc.description.references | Maier, H. R., y G. C. Dandy (1999). Empirical comparison of various methods for training feedforward neural networks for salinity forecasting. Water Resour. Res.35: 2591 - 2596. | es_ES |
dc.description.references | Martín del Brío, B. y A. Sanz Molina. (1997) Redes neuronales y sistemas borrosos. Ed. Ra - Ma | es_ES |
dc.description.references | Mason, J. C., R. K. Price y A. Tem'me (1996). A neural network model of rainfall runoff using radial basis functions. J. Hydr. Res. 34: 537 - 548. | es_ES |
dc.description.references | Morshed, J., y J. J. Kaluarachchi (1998). Parameter estimation using artificial neural network and genetic algorithm for free product migration and recovery. Water Resour. Res. 34: 1101 - 1113. | es_ES |
dc.description.references | Rodríguez Iturbe, I., B. Febres de Powder y J. B. Valdés (1987). Rectangular pulses point processes for rainfall: Analysis of empirical data. J. Geophysical Res. 92: 9645 - 9656. | es_ES |
dc.description.references | Rogers, L. L., y F. U. Dowla (1994). Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res.30: 457 - 481. | es_ES |
dc.description.references | Schaap, M.G., y W. Bouten (1996). Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32: 3033 - 3040. | es_ES |
dc.description.references | Swingler, K. (1996). Applying neural networks: a practical guide. Ed. Morgan Kaufman Publishers, Inc. | es_ES |
dc.description.references | Whitley, R., y T. V. Hromadka II (1999). Approximate confidence intervals for design floods for a single site using a neural network. Water Resour. Res. 35: 203 - 209. | es_ES |