- -

Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells

Show full item record

Ródenas Rochina, J.; Kelly, DJ.; Gómez Ribelles, JL.; Lebourg, MM. (2016). Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomedical Physics & Engineering Express. 2(3). https://doi.org/10.1088/2057-1976/2/3/035005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140056

Files in this item

Item Metadata

Title: Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells
Author: Ródenas Rochina, Joaquín Kelly, Daniel John Gómez Ribelles, José Luís Lebourg, Myriam Madeleine
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Issued date:
Abstract:
[EN] Mechanical cues such as hydrostatic pressure (HP) are known to regulate mesenchymal stem cell (MSC) differentiation. The fate of such cells is also strongly influenced by their substrate. The objective of this study ...[+]
Subjects: Mesenchymal stem cells , Scaffold , Tissue engineering
Copyrigths: Reserva de todos los derechos
Source:
Biomedical Physics & Engineering Express. (eissn: 2057-1976 )
DOI: 10.1088/2057-1976/2/3/035005
Publisher:
IOP Publishing
Publisher version: https://doi.org/10.1088/2057-1976/2/3/035005
Project ID:
info:eu-repo/grantAgreement/EC/FP7/258463/EU/Novel mesenchymal stem cell based therapies for articular cartilage repair/
info:eu-repo/grantAgreement/GVA//BEFPI%2F2012%2F084/
info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F238/
info:eu-repo/grantAgreement/SFI/SFI President of Ireland Young Resercher Award (PIYRA)/08%2FYI5%2FB1336/IE/Mechanobiology of mesenchymal stem cells for articular cartilage repair/
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
Thanks:
Joaquin Rodenas-Rochina acknowledges funding of his PhD and his stay at the Trinity Centre for Bioengineering by the Generalitat Valenciana through ACIF grant (ACIF/2010/238) and BEFPI grant (BEFPI/2012/084) respectively. ...[+]
Type: Artículo

References

Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801

Redman, S., Oldfield, S., & Archer, C. (2005). Current strategies for articular cartilage repair. European Cells and Materials, 9, 23-32. doi:10.22203/ecm.v009a04

Liao, S., Chan, C. K., & Ramakrishna, S. (2008). Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering: C, 28(8), 1189-1202. doi:10.1016/j.msec.2008.08.015 [+]
Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801

Redman, S., Oldfield, S., & Archer, C. (2005). Current strategies for articular cartilage repair. European Cells and Materials, 9, 23-32. doi:10.22203/ecm.v009a04

Liao, S., Chan, C. K., & Ramakrishna, S. (2008). Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering: C, 28(8), 1189-1202. doi:10.1016/j.msec.2008.08.015

Huang, A. H., Farrell, M. J., & Mauck, R. L. (2010). Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. Journal of Biomechanics, 43(1), 128-136. doi:10.1016/j.jbiomech.2009.09.018

Gelse, K., Ekici, A. B., Cipa, F., Swoboda, B., Carl, H. D., Olk, A., … Klinger, P. (2012). Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthritis and Cartilage, 20(2), 162-171. doi:10.1016/j.joca.2011.12.004

Vinardell, T., Sheehy, E. J., Buckley, C. T., & Kelly, D. J. (2012). A Comparison of the Functionality and In Vivo Phenotypic Stability of Cartilaginous Tissues Engineered from Different Stem Cell Sources. Tissue Engineering Part A, 18(11-12), 1161-1170. doi:10.1089/ten.tea.2011.0544

Girotto, D., Urbani, S., Brun, P., Renier, D., Barbucci, R., & Abatangelo, G. (2003). Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19), 3265-3275. doi:10.1016/s0142-9612(03)00160-1

Wu, J., Xue, K., Li, H., Sun, J., & Liu, K. (2013). Improvement of PHBV Scaffolds with Bioglass for Cartilage Tissue Engineering. PLoS ONE, 8(8), e71563. doi:10.1371/journal.pone.0071563

Carlisle, E. M. (1988). Silicon as a trace nutrient. Science of The Total Environment, 73(1-2), 95-106. doi:10.1016/0048-9697(88)90190-8

Hubka, K. M., Dahlin, R. L., Meretoja, V. V., Kasper, F. K., & Mikos, A. G. (2014). Enhancing Chondrogenic Phenotype for Cartilage Tissue Engineering: Monoculture and Coculture of Articular Chondrocytes and Mesenchymal Stem Cells. Tissue Engineering Part B: Reviews, 20(6), 641-654. doi:10.1089/ten.teb.2014.0034

Vinatier, C., Mrugala, D., Jorgensen, C., Guicheux, J., & Noël, D. (2009). Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in Biotechnology, 27(5), 307-314. doi:10.1016/j.tibtech.2009.02.005

Kelly, D. J., & Jacobs, C. R. (2010). The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews, 90(1), 75-85. doi:10.1002/bdrc.20173

Welter, J. F., Solchaga, L. A., & Baskaran, H. (2012). Chondrogenesis from Human Mesenchymal Stem Cells: Role of Culture Conditions. Stem Cells and Cancer Stem Cells, Volume 5, 269-280. doi:10.1007/978-94-007-2900-1_26

Grad, S., Eglin, D., Alini, M., & Stoddart, M. J. (2011). Physical Stimulation of Chondrogenic Cells In Vitro: A Review. Clinical Orthopaedics and Related Research®, 469(10), 2764-2772. doi:10.1007/s11999-011-1819-9

Kessler, M. W., & Grande, D. A. (2008). Tissue engineering and cartilage. Organogenesis, 4(1), 28-32. doi:10.4161/org.6116

Elder, B. D., & Athanasiou, K. A. (2009). Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration. Tissue Engineering Part B: Reviews, 15(1), 43-53. doi:10.1089/ten.teb.2008.0435

Wagner, D. R., Lindsey, D. P., Li, K. W., Tummala, P., Chandran, S. E., Smith, R. L., … Beaupre, G. S. (2008). Hydrostatic Pressure Enhances Chondrogenic Differentiation of Human Bone Marrow Stromal Cells in Osteochondrogenic Medium. Annals of Biomedical Engineering, 36(5), 813-820. doi:10.1007/s10439-008-9448-5

Meyer, E. G., Buckley, C. T., Steward, A. J., & Kelly, D. J. (2011). The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1257-1265. doi:10.1016/j.jmbbm.2011.04.012

Wong, M., Siegrist, M., & Goodwin, K. (2003). Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone, 33(4), 685-693. doi:10.1016/s8756-3282(03)00242-4

Carroll, S. F., Buckley, C. T., & Kelly, D. J. (2014). Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad. Journal of Biomechanics, 47(9), 2115-2121. doi:10.1016/j.jbiomech.2013.12.006

Steward, A. J., Thorpe, S. D., Vinardell, T., Buckley, C. T., Wagner, D. R., & Kelly, D. J. (2012). Cell–matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomaterialia, 8(6), 2153-2159. doi:10.1016/j.actbio.2012.03.016

Villanueva, I., Weigel, C. A., & Bryant, S. J. (2009). Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomaterialia, 5(8), 2832-2846. doi:10.1016/j.actbio.2009.05.039

Peter, M., Binulal, N. S., Nair, S. V., Selvamurugan, N., Tamura, H., & Jayakumar, R. (2010). Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 158(2), 353-361. doi:10.1016/j.cej.2010.02.003

Ródenas-Rochina, J., Ribelles, J. L. G., & Lebourg, M. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(5), 1293-1308. doi:10.1007/s10856-013-4878-5

Lennon, D. P., & Caplan, A. I. (2006). Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 34(11), 1604-1605. doi:10.1016/j.exphem.2006.07.014

Thorpe, S. D., Buckley, C. T., Vinardell, T., O’Brien, F. J., Campbell, V. A., & Kelly, D. J. (2008). Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377(2), 458-462. doi:10.1016/j.bbrc.2008.09.154

Connelly, J. T., García, A. J., & Levenston, M. E. (2007). Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials, 28(6), 1071-1083. doi:10.1016/j.biomaterials.2006.10.006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record