- -

Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ródenas Rochina, Joaquín es_ES
dc.contributor.author Kelly, Daniel John es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lebourg, Myriam Madeleine es_ES
dc.date.accessioned 2020-04-03T06:03:33Z
dc.date.available 2020-04-03T06:03:33Z
dc.date.issued 2016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140056
dc.description.abstract [EN] Mechanical cues such as hydrostatic pressure (HP) are known to regulate mesenchymal stem cell (MSC) differentiation. The fate of such cells is also strongly influenced by their substrate. The objective of this study was to test how different modifications of polycaprolactone (PCL) scaffolds would influence the response of MSCs to HP. Porcine bone marrow derived MSCs were cultured on PCL, PCL-hyaluronic acid (HA) and PCL-Bioglass (R) (BG) scaffolds for 35 d and stimulated with aHP bioreactor (10 MPa; 1 Hz; 2 h d(-1)). Scaffold composition was found to modulate the response to HP. MSCs seeded onto both PCL and BGscaffolds responded positively to the application of HP, with increases in cartilage extracellular matrix synthesis and a reduction in type I collagen accumulation. This positive effect was not observed onHAscaffolds. The results of this study demonstrate that changes to scaffold composition can have a notable effect on the response of MSCs to bioreactor culture conditions. es_ES
dc.description.sponsorship Joaquin Rodenas-Rochina acknowledges funding of his PhD and his stay at the Trinity Centre for Bioengineering by the Generalitat Valenciana through ACIF grant (ACIF/2010/238) and BEFPI grant (BEFPI/2012/084) respectively. Funding to Daniel Kelly was provided by Science Foundation Ireland (President of Ireland Young Researcher Award: 08/YI5/B1336) and the European Research Council (StemRepair-Project number 258463) Jose L Gomez Ribelles acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through the MAT2013-46467-C4-1-R project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Biomedical Physics & Engineering Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Scaffold es_ES
dc.subject Tissue engineering es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2057-1976/2/3/035005 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/258463/EU/Novel mesenchymal stem cell based therapies for articular cartilage repair/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEFPI%2F2012%2F084/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F238/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI President of Ireland Young Resercher Award (PIYRA)/08%2FYI5%2FB1336/IE/Mechanobiology of mesenchymal stem cells for articular cartilage repair/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Ródenas Rochina, J.; Kelly, DJ.; Gómez Ribelles, JL.; Lebourg, MM. (2016). Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomedical Physics & Engineering Express. 2(3). https://doi.org/10.1088/2057-1976/2/3/035005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/2057-1976/2/3/035005 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2057-1976 es_ES
dc.relation.pasarela S\320450 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Science Foundation Ireland es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder European Commission
dc.description.references Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801 es_ES
dc.description.references Redman, S., Oldfield, S., & Archer, C. (2005). Current strategies for articular cartilage repair. European Cells and Materials, 9, 23-32. doi:10.22203/ecm.v009a04 es_ES
dc.description.references Liao, S., Chan, C. K., & Ramakrishna, S. (2008). Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering: C, 28(8), 1189-1202. doi:10.1016/j.msec.2008.08.015 es_ES
dc.description.references Huang, A. H., Farrell, M. J., & Mauck, R. L. (2010). Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. Journal of Biomechanics, 43(1), 128-136. doi:10.1016/j.jbiomech.2009.09.018 es_ES
dc.description.references Gelse, K., Ekici, A. B., Cipa, F., Swoboda, B., Carl, H. D., Olk, A., … Klinger, P. (2012). Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthritis and Cartilage, 20(2), 162-171. doi:10.1016/j.joca.2011.12.004 es_ES
dc.description.references Vinardell, T., Sheehy, E. J., Buckley, C. T., & Kelly, D. J. (2012). A Comparison of the Functionality and In Vivo Phenotypic Stability of Cartilaginous Tissues Engineered from Different Stem Cell Sources. Tissue Engineering Part A, 18(11-12), 1161-1170. doi:10.1089/ten.tea.2011.0544 es_ES
dc.description.references Girotto, D., Urbani, S., Brun, P., Renier, D., Barbucci, R., & Abatangelo, G. (2003). Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19), 3265-3275. doi:10.1016/s0142-9612(03)00160-1 es_ES
dc.description.references Wu, J., Xue, K., Li, H., Sun, J., & Liu, K. (2013). Improvement of PHBV Scaffolds with Bioglass for Cartilage Tissue Engineering. PLoS ONE, 8(8), e71563. doi:10.1371/journal.pone.0071563 es_ES
dc.description.references Carlisle, E. M. (1988). Silicon as a trace nutrient. Science of The Total Environment, 73(1-2), 95-106. doi:10.1016/0048-9697(88)90190-8 es_ES
dc.description.references Hubka, K. M., Dahlin, R. L., Meretoja, V. V., Kasper, F. K., & Mikos, A. G. (2014). Enhancing Chondrogenic Phenotype for Cartilage Tissue Engineering: Monoculture and Coculture of Articular Chondrocytes and Mesenchymal Stem Cells. Tissue Engineering Part B: Reviews, 20(6), 641-654. doi:10.1089/ten.teb.2014.0034 es_ES
dc.description.references Vinatier, C., Mrugala, D., Jorgensen, C., Guicheux, J., & Noël, D. (2009). Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in Biotechnology, 27(5), 307-314. doi:10.1016/j.tibtech.2009.02.005 es_ES
dc.description.references Kelly, D. J., & Jacobs, C. R. (2010). The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews, 90(1), 75-85. doi:10.1002/bdrc.20173 es_ES
dc.description.references Welter, J. F., Solchaga, L. A., & Baskaran, H. (2012). Chondrogenesis from Human Mesenchymal Stem Cells: Role of Culture Conditions. Stem Cells and Cancer Stem Cells, Volume 5, 269-280. doi:10.1007/978-94-007-2900-1_26 es_ES
dc.description.references Grad, S., Eglin, D., Alini, M., & Stoddart, M. J. (2011). Physical Stimulation of Chondrogenic Cells In Vitro: A Review. Clinical Orthopaedics and Related Research®, 469(10), 2764-2772. doi:10.1007/s11999-011-1819-9 es_ES
dc.description.references Kessler, M. W., & Grande, D. A. (2008). Tissue engineering and cartilage. Organogenesis, 4(1), 28-32. doi:10.4161/org.6116 es_ES
dc.description.references Elder, B. D., & Athanasiou, K. A. (2009). Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration. Tissue Engineering Part B: Reviews, 15(1), 43-53. doi:10.1089/ten.teb.2008.0435 es_ES
dc.description.references Wagner, D. R., Lindsey, D. P., Li, K. W., Tummala, P., Chandran, S. E., Smith, R. L., … Beaupre, G. S. (2008). Hydrostatic Pressure Enhances Chondrogenic Differentiation of Human Bone Marrow Stromal Cells in Osteochondrogenic Medium. Annals of Biomedical Engineering, 36(5), 813-820. doi:10.1007/s10439-008-9448-5 es_ES
dc.description.references Meyer, E. G., Buckley, C. T., Steward, A. J., & Kelly, D. J. (2011). The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1257-1265. doi:10.1016/j.jmbbm.2011.04.012 es_ES
dc.description.references Wong, M., Siegrist, M., & Goodwin, K. (2003). Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone, 33(4), 685-693. doi:10.1016/s8756-3282(03)00242-4 es_ES
dc.description.references Carroll, S. F., Buckley, C. T., & Kelly, D. J. (2014). Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad. Journal of Biomechanics, 47(9), 2115-2121. doi:10.1016/j.jbiomech.2013.12.006 es_ES
dc.description.references Steward, A. J., Thorpe, S. D., Vinardell, T., Buckley, C. T., Wagner, D. R., & Kelly, D. J. (2012). Cell–matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomaterialia, 8(6), 2153-2159. doi:10.1016/j.actbio.2012.03.016 es_ES
dc.description.references Villanueva, I., Weigel, C. A., & Bryant, S. J. (2009). Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomaterialia, 5(8), 2832-2846. doi:10.1016/j.actbio.2009.05.039 es_ES
dc.description.references Peter, M., Binulal, N. S., Nair, S. V., Selvamurugan, N., Tamura, H., & Jayakumar, R. (2010). Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 158(2), 353-361. doi:10.1016/j.cej.2010.02.003 es_ES
dc.description.references Ródenas-Rochina, J., Ribelles, J. L. G., & Lebourg, M. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(5), 1293-1308. doi:10.1007/s10856-013-4878-5 es_ES
dc.description.references Lennon, D. P., & Caplan, A. I. (2006). Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 34(11), 1604-1605. doi:10.1016/j.exphem.2006.07.014 es_ES
dc.description.references Thorpe, S. D., Buckley, C. T., Vinardell, T., O’Brien, F. J., Campbell, V. A., & Kelly, D. J. (2008). Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377(2), 458-462. doi:10.1016/j.bbrc.2008.09.154 es_ES
dc.description.references Connelly, J. T., García, A. J., & Levenston, M. E. (2007). Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials, 28(6), 1071-1083. doi:10.1016/j.biomaterials.2006.10.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem