- -

A weak group inverse for rectangular matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A weak group inverse for rectangular matrices

Mostrar el registro completo del ítem

Ferreyra, DE.; Orquera, V.; Thome, N. (2019). A weak group inverse for rectangular matrices. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3727-3740. https://doi.org/10.1007/s13398-019-00674-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140191

Ficheros en el ítem

Metadatos del ítem

Título: A weak group inverse for rectangular matrices
Autor: Ferreyra, David Eduardo Orquera, V. Thome, Néstor
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we extend the notion of weak group inverse to rectangular matrices (called WweightedWGinverse) by using the weighted core EP inverse recently investigated. This new generalized inverse also generalizes ...[+]
Palabras clave: Generalized inverses , Weighted weak group inverse , Weighted core EP inverse , Weighted Drazin inverse
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-019-00674-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-019-00674-9
Código del Proyecto:
info:eu-repo/grantAgreement/CONICET//PIP 11220150100433CO/
info:eu-repo/grantAgreement/UNRC//PPI 18%2FC472/
info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
Agradecimientos:
First author was partially supported by UNRC (Grant PPI 18/C472) and CONICET (Grant PIP 112-201501-00433CO). Third author was partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grants DGI ...[+]
Tipo: Artículo

References

Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)

Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014) [+]
Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)

Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014)

Bajodah, A.H.: Servo-constraint generalized inverse dynamics for robot manipulator control design. Int. J. Robot. Autom. 25, (2010). https://doi.org/10.2316/Journal.206.2016.1.206-3291

Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear transformations. SIAM, Philadelphia (2009)

Cline, R.E., Greville, T.N.E.: A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 53–62 (1980)

Dajić, A., Koliha, J.J.: The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 2, 163–181 (2007)

Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Rob. Res. 12, 1–19 (1993)

Drazin, M.P.: Pseudo-inverses in associate rings and semirings. Am. Math. Mon. 65, 506–514 (1958)

Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41, 265–281 (2018)

Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)

Gigola, S., Lebtahi, L., Thome, N.: The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem. J. Comput. Appl. Math. 291, 449–457 (2016)

Hartwig, R.E.: The weighted $$*$$ ∗ -core-nilpotent decomposition. Linear Algebra Appl. 211, 101–111 (1994)

Kirkland, S.J., Neumann, M.: Group inverses of M-matrices and their applications. Chapman and Hall/CRC, London (2013)

Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014)

Male $${{\check{\rm s}}}$$ s ˇ ević, B., Obradović, R., Banjac, B., Jovović, I., Makragić, M.: Application of polynomial texture mapping in process of digitalization of cultural heritage. arXiv:1312.6935 (2013). Accessed 14 June 2018

Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62, 792–802 (2014)

Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66, 1046–1053 (2018)

Meng, L.S.: The DMP inverse for rectangular matrices. Filomat 31, 6015–6019 (2017)

Mosić, D.: The CMP inverse for rectangular matrices. Aequaetiones Math. 92, 649–659 (2018)

Penrose, R.: A generalized inverse for matrices. Proc. Cambrid. Philos. Soc. 51, 406–413 (1955)

Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8, 982–998 (2015)

Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87, 181–186 (1991)

Wang, H.: Core-EP decomposition and its applications. Linear Algebra Appl. 508, 289–300 (2016)

Wang, H., Chen, J.: Weak group inverse. Open Math. 16, 1218–1232 (2018)

Wei, Y.: A characterization for the $$W$$ W -weighted Drazin inverse and a Crammer rule for the $$W$$ W -weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem